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ABSTRACT 

Four-Dimensional variational ( 4-D VAR) data assimilation has become a very ac­

tive research area during the past two decades. In this dissertation, the full physics 

adjoint model of the FSU Global Spectral Model (FSU GSM) was completely de­

rived by incorporating the adjoint of radiation and boundary layer parameterization 

packages into the data assimilation system. The radiation and boundary layer pa­

rameterization packages and the derivation of their corresponding tangent linear and 

adjoint counterparts in the FSU GSM are presented as part of this dissertation. 

Notational conventions for variables and subroutines used in the tangent linear and 

adjoint models are also provided. 

The full-physics adjoint of the FSU GSM of version T42112 was applied to carry 

out 4-D VAR data assimilation and adjoint parameter estimation using initialized 

analysis data sets. We first presented the formalism of 4-D VAR data assimilation 

and the methodology of adjoint parameter estimation, and closely examined the 

feasibility of performing 4-D VAR data assimilation using the FSU GSM and its full­

physics adjoint model. Three key parameters (the bi-harmonic horizontal diffusion 

coefficient, the ratio of the transfer coefficient of moisture to the transfer coefficient 

of sensible heat, and the Asselin filter coefficient) along with the initial conditions 

were optimally recovered from the observations using an adjoint optimal parameter 

estimation approach. Then, we assessed the impacts of optimal initial conditions 

and key parameters estimation on the performance of the FSU GSM. 

The 6h forecast fields starting from the retrieved optimal initial conditions and 

the optimally identified parameter values, i.e., the forecast fields at the end of the 

assimilation window, were studied in detail. They were found to successfully capture 
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the main features of the analysis fields. A number of experiments were conducted to 

separately assess the effect of carrying out 4-D VAR assimilation when both the initial 

conditions and key parameters served as control variables versus the case when only 

the key parameters were optimally estimated. Although the impact of optimal initial 

conditions dominated that of the optimal parameter values at the early stages of the 

forecast, a positive impact on the ensuing forecasts due to each optimally identified 

parameter value was observed with the maximum benefit being obtained due to the 

combined effect of the three optimal parameter values. The model's "memory" of 

the impacts of optimal initial conditions and identified parameter values was also 

investigated. The results show that in the ensuing forecasts the model tended first 

to ''forget" the impact of optimal initial conditions while the impact of the optimally 

identified parameter values persisted beyond 72 hours. We noticed also that the 

geographic regions with more pronounced impacts differed depending on whether the 

results originated from the optimal initial conditions or from the optimally identified 

parameter values. The performance of the corresponding physical parameterization 

schemes was improved via tuning the physical parameter values. The best model 

forecast performance was obtained when both the optimal initial conditions and 

optimally identified parameter values were used simultaneously. 

A preliminary experiment was also performed to calculate the sensitivity of the 

model 1-day forecast error to the initial conditions. The results were applied to 

identify regions of large analysis uncertainties. 

xvii 
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CHAPTER 1 

INTRODUCTION 

With the availability of various types of observational data, especially the asyn­

optic data, the necessity of developing new techniques for using the spatially and/or 

temporally heterogeneous data to improve the quality of initial conditions in numer­

ical weather prediction (NWP) has become imperious. This is particularly so for 

the tropics where the coverage of the current observation network is sparse and the 

geostrophic balance is not a reasonable approximation. Four-Dimensional variational 

( 4-D VAR) data assimilation is one of the most promising methods, whose objective 

is to fit the model forecasts to the observations over some time and space interval. 

It can combine the previous data with currently available data using the full model 

dynamics, and it imposes no restriction on the data type to be used in the variational 

data assimilation. It is possible, therefore, to utilize the available data, especially 

asynoptic data, as much as possible, and to retrieve information not only about the 

variables whose observations are available, but also about the related variables via 

the full model dynamics. 

This technique was first implemented in meteorology by Le Dimet (1980, 1982, 

1983a,b), Courtier (1984), Derber (1985), Lewis and Derber (1985), Le Dimet and 

Talagrand (1986), Talagrand and Courtier (1987), Courtier and Talagrand (1990), 

etc. on shallow water models and quasi-geostrophic models. Later, this method 

was applied to more complex models by Thepaut and Courtier (1991), Navon, et al. 

1 
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(1992c), Rabier and Courtier (1992), Thepaut, et al. (1996), to name just a few. A 

review of variational and optimization methods in meteorology was presented by Le 

Dimet and Navon (1988). 4-D VAR data assimilation is able to extract information 

from the observations in a way consistent with the dynamics of the model. Assuming 

the model is perfect, 4-D VAR data assimilation is equivalent to the fixed-interval 

Kalman smoother (Ghil and Malanotte-Rizzoli 1991). The model deficiency was 

first accounted for in a 4-D VAR method through the definition of a systematic error 

term by Derber (1989). Later, Zupanski (1997) presented a technique to apply the 

forecast model as a general weak constraint in the NCEP's regional 4-D VAR data 

assimilation system in which the model error had a flexible time resolution for the 

random error term. 

Recently, further studies with special emphasis on including the physical pro­

cesses of the NWP model into 4-D VAR data assimilation system have been carried 

out. Several groups demonstrated the ability to perform 4-D VAR data assimilation 

using discontinuous physical processes. Zou et al. (1993b) carried out the variational 

data assimilation with moist processes using the NMC spectral model. Vukicevic and 

Errico (1993) investigated the impact of high nonlinearity of parameterized scheme 

on performing linearization. Zupanski (1993c) performed 4-D VAR data assimilation 

with the Betts-Miller cumulus convection scheme using NMC regional ETA forecast 

model. Tsuyuki (1996b) carried out a 4-D VAR data assimilation using precipita­

tion data on FSU Global Spectral Model (GSM). Currently, 4-D VAR is the most 

widely used data assimilation scheme in numerical weather prediction. The National 

Meteorological Center has implemented a 3-D variational data assimilation (Parrish 

2 
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and Derber, 1992). The European Center for Medium-Range Weather Forecasts 

(ECMWF) has put forth a tremendous effort on 3-D VAR and 4-D VAR, and now 

the 3-D VAR version has become operationally feasible, along with a simplified ver­

sion of 4-D VAR data assimilation. The more advanced 4-D VAR data assimilation 

is on the edge of feasibility for operational implementation (Courtier et al. 1994). 

The HIR.LAM project, a joint effort among several weather services in the Nordic 

countries, the Netherlands and Ireland for research and development in short-range 

mesoscale numerical weather prediction, has developed a 4-D VAR system in order 

to better utilize the new sources of data that are becoming available via satellites 

and radars (Gustafsson and Lonnberg, 1995). However, none of the adjoint models 

of the above-mentioned models contain the full-physical processes package. Since the 

radiation and boundary layer processes play important roles in the weather system, 

especially for the tropics, we developed in this dissertation the tangent linear and 

adjoint codes for the additional two physical parameterization packages, and incor­

porated them into the 4-D VAR system, thus obtaining the complete full-physics 

adjoint model of the FSU GSM. 

The optimal model initial conditions retrieved via the 4-D VAR data assimilation 

decrease the model forecast errors which originate in the errors in the initial condi­

tions. The skill of numerical weather prediction is expected to increase sizably in the 

near future due to the availability of better initial conditions for numerical weather 

prediction models. These improved initial conditions result from both the applica­

tion of the new advanced data assimilation methods and the use of new sources of 

data, such as satellite data, radar data, profilers, and other remotely sensed data. 

3 
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Some data assimilation and forecast experiments suggest that large forecast errors 

usually arise from errors in the initial conditions in the mid-latitude, however, the 

accurate representations of the physical processes, i.e., parameterization schemes, 

also play a major role in determining the model forecast skill, at least in the troi:r 

ics. In this study, we do not focus on the comparison amongst different physical 

parameterization schemes, rather we study key parameters existing in the schemes 

currently used in the FSU GSM. By performing adjoint parameter estimation of a 

few judiciously chosen parameters, we expect to obtain a better understanding of the 

important roles played by the physical processes in the 4-D VAR data assimilation, 

and to assess the relative importance of the impacts of the optimal initial conditions 

and the optimally identified parameter values. 

A numerical weather forecast model involves a number of parameters that are 

determined empirically. Some of these parameters, which are very common in phys­

ical parameterization schemes, contain information about the flow's properties and 

characteristics or originate in the simplification of the physical processes. Other pa­

rameters are introduced due to numerical stability considerations. The values of the 

parameters directly or indirectly impact upon the performance of the model. Gener­

ally, the values of the parameters are determined by trial and error, i.e., there is no 

objective criterion to choose "optimal" values of the parameters. In this study, we 

focus on the optimal estimation of several key parameters which are known to have 

an impact on NWP performance. The key parameters to be optimally identified can 

be chosen either via user's experience or implementing a relative adjoint sensitiv­

ity analysis. Such an analysis enables one to rank a subset of chosen parameters 

4 
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according to their relative sensitivities of adequately chosen model responses. The 

key parameters studied here are obtained on the basis of meteorological experience. 

We wish to identify the "optimal" bi-harmonic horizontal diffusion coefficient K., the 

ratio, 'Y, of the transfer coefficient of moisture to the transfer coefficient of sensible 

heat, and the Asselin filter coefficient FC using adjoint parameter estimation, and 

study their impacts on the ensuing model forecasts. 

Research on adjoint parameter estimation has been carried out in the last twenty 

years on topics such as aquifer parameter estimation under transient and steady state 

conditions in the field of hydrology (Carrera and Neumann, 1986a,b,c), bottom drag 

coefficient identification in a tidal channel {Panchang and O'Brien, 1989), wind stress 

coefficient estimation along with the estimation of the oceanic eddy viscosity profile 

(Yu and O'Brien, 1991) and nudging coefficient estimation in the NMC adiabatic 

version of the spectral model {Zou, et al., 1992), inter alia. The issue of the adjoint 

parameter estimation was also addressed by Le Di.met and Navon (1988). Wergen 

(1992) recovered both the initial conditions and a set of parameters from observations 

using a 1-D shallow-water equation model. His results showed that even with noisy 

observations the parameters were recovered to an acceptable degree of accuracy. For 

a detailed survey of the state-of-the-art of parameter estimation in meteorology and 

oceanography, see Navan (1997). 

The parameter estimation procedure is aimed at choosing an "optimal" parameter 

in an admissible parameter set, so that the model solutions corresponding to this 

parameter fit the observations in a least-squares sense, i.e., as a minimi:iation problem 

of an output-error criterion. The full-physics FSU GSM and its adjoint model were 

5 
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employed to recover the optimal initial conditions and to estimate optimal parameter 

values from the observations, and their impacts on the performance of the FSU GSM 

were assessed. 

This dissertation is organized as follows. The objectives of this study are pre­

sented in chapter 2. The radiation and planetary boundary layer (PBL) parameteri­

zation packages and the derivation of their corresponding tangent linear and adjoint 

counterparts in the FSU GSM are described in chapter 3. The physical processes are 

usually highly nonlinear and involve numerous on-off switches. However, since we 

strive to preserve the original physical parameterization characteristics unchanged 

as much as possible, only function discontinuities which seriously affect the tangent 

linear approximation and the convergence rate of the minimization algorithm are con­

sidered for removal. The modifications of the physical processes are also described 

in this chapter. 

The basic formalism of 4-D VAR data assimilation and a twin experiment are 

presented in chapter 4. The twin experiment was carried out to ensure that the 

assimilation system was properly constructed. 

The impacts of the optimal initial conditions and the optimally identified key 

parameters on the performance of the FSU GSM are discussed in chapter 5. First, 

the characteristics of the three parameters optimally identified in the present study, 

i.e., bi-harmonic horizontal diffusion coefficient, the ratio 'Y of the transfer coefficient 

of moisture to the transfer coefficient of sensible heat and the Asselin filter coefficient, 

are described. Then, the methodology of adjoint parameter estimation is described 

in detail. Since some parameters are known to vary between given bounds, two 

6 
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methods are presented to transform a multivariate constrained optimization problem 

into an unconstrained one. lli-posedness, identifiability and stability issues are also 

addressed in this chapter. Following this, the numerical experiments and results 

are presented. The optimal initial conditions and the optimal values of the above­

mentioned three parameters were retrieved from a set of initialized analysis data, 

then the model 6h forecasts starting from the retrieved optimal initial conditions 

and the optimally identified parameter values were compared with the analysis fields 

at the end of the assimilation window. We also studied the relative importance 

of the impacts of optimal model initial conditions and optimally identified model 

parameters on the model performance for both early and late stages of the model 

forecast. The impact of each optimally identified parameter as well as their combined 

impact on the ensuing model forecast were also discussed. This was followed by an 

experimental study of the model's "memory" or retention of the impacts of optimal 

initial conditions and identified parameter values. Different impact patterns emerged 

due to the different mechanisms by which optimal initial conditions and the optimally 

identified parameter values interacted with the model. 

A preliminary experiment aimed at studying the sensitivity of the model 1-day 

forecast error to the initial conditions is described in chapter 6. The results were 

applied to identify regions where analysis problems lead to large forecast errors. 

Finally, the summary and directions for future research are presented in chapter 7. 

7 
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CHAPTER2 

OBJECTIVES 

The FSU GSM has been successfully applied for numerical weather forecasting, 

especially in the tropics. The effort to establish a 4-D VAR data assimilation system 

for this model has begun in 1993. The adjoint code for the dry adiabatic version of 

the FSU GSM was developed by Zhi Wang (Wang 1993). Later, Tsuyuki (1996a) in­

corporated the moisture variable, the smoothed parameterization of moist processes, 

horizontal diffusion and a simplified surface friction, and carried out experiments 

using the precipitation data. Our work continues this effort by incorporating the 

radiation and boundary layer processes into the data assimilation system due to the 

important roles they play in simulating various large-scale and mesoscale phenomena, 

especially in the tropical weather system. This study completes the derivation of the 

full-physics adjoint model of the FSU GSM, and renders the adjoint model consis­

tent with the nonlinear forecast model. If the two models, the forward model and 

its adjoint, are inconsistent, this may have a negative effect on the process of adjoint 

optimal parameter estimation. Moreover, the adjoint technique allows to use the 

variational approach for assimilating various types of observations in meteorology, 

including satellite observations, and this necessitates availability of the full-physics 

adjoint. 

The main purposes of this study are to complete the full-physics adjoint model 

of the FSU GSM, carry out 4-D VAR data assimilation and parameter estimation 
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numerical experiments using the FSU GSM and its full-physics adjoint, and assess 

the impacts of the optimal model initial conditions and the optimally identified 

model parameters on the performance of the FSU GSM. A preliminary study for the 

sensitivity of model 1-day forecast error to the initial conditions is also one of our 

goals aiming at localizing regions with large analysis uncertainties. 

The research work in this dissertation consisted of the following five phases : 

a) Development of the tangent linear and adjoint codes of the radiation processes. 

b) Development of the tangent linear and adjoint codes of the boundary layer 

processes including vertical diffusion. 

c) Incorporation of the radiation and boundary layer processes into the data 

assimilation system; A twin experiment was performed to demonstrate the feasibility 

of carrying out 4-D VAR data assimilation using the FSU GSM and its full-physics 

adjoint model. 

d) Data assimilation and parameter estimation using initialized ECMWF analysis 

data, and the assessment of their relative impacts on the performance of the FSU 

GSM. 

e) An application of sensitivity of the model 1-day forecast error to the model 

initial conditions. 

9 
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CHAPTER3 

DESCRIPTION OF THE TANGENT-LINEAR AND ADJOINT 

MODELS OF THE RADIATION AND BOUNDARY LAYER 

PARAMETERIZATION PACKAGES OF THE FSU GLOBAL 

SPECTRAL MODEL T42L12 

3.1 Description of the FSU GSM 

In the FSU GSM, the u vertical coordinate is defined as 

(3.1) 

where p is the pressure and Pa the surface pressure. Thus, u = 0 is at the top of the 

atmosphere and a= 1 at the earth's surface. The boundary conditions are & = 0 at 

u = 1 and u = 0. The original governing equations of the FSU GSM are given as 

follows: 

the vorticity equation: 

a( ( .av ) 8t = -V . ( ( + f)V - k · V x fil'V q + u au - F , (3.2) 

the divergence equation: 

an ( . av ) 2 ( v. v) 8t = k · x(( + /)V-V · R:I'Vq+u au -F -V </>+-
2

- , (3.3) 
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the thermodynamic equation: 

(3.4) 

the continuity equation: 

aq au 
8t = -D - au - V · V q , (3.5) 

the hydrostatic equation: 

a¢ 
u au =-RT"' (3.6) 

and the moisture equation: 

as= -V·VS+SD-iraS +HT-HM-[RT - ~ l [n+ aauu - uu·] . (3.7) 
&t au Gp €L(Td) 

In the above equations, the terms are defined as follows: 

• f = Coriolis parameter, 

• V = horizontal vector wind, 

• ( = vertical component of vorticity = k · V x V, 

• D = horizontal divergence = V · V, 

• T is the absolute temperature, 

• Tu is the virtual temperature, 

• q = lnp8 , 

• 'Y = static stability = f:u - ~, 

11 
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• & = vertical velocity in sigma coordinates, 

= (u - 1) (D + V · \Jq) + iJu + i,rrr. \Jq, 

• <P = geopotential height, 

• F is the horizontal frictional force per unit mass, 

• HT = the diabatic heating, 

• R is the gas constant for dry air, 

• C p is the specific heat of dry air at constant pressure, 

• Td is the dewpoint temperature, 

• S = T - Td is the dewpoint depression, 

• € is the ratio of the molecular weight of water vapor to effective molecular 

weight of dry air (0.622), 

• L(Td) is the latent heat of vaporization of water or ice, 

• HM represents moisture sources or sinks, 

• F =integral operator =fl Fdu, 

• Fr =integral operator= J; Fdu. 

The dependent variables are expanded in triangularly truncated series of spherical 

harmonics as 
J J 

F= L L:FiYi, (3.8) 
m=-J l=lml 
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where Fr are complex expansion coefficients, functions of a and t. 

In this study, a T42L12 version of the FSU GSM is used, i.e., the horizontal res­

olution is of a triangular truncation type with total wavenumber of 42 and 12 levels 

in the vertical. The physical processes include orography, planetary boundary layer 

processes, vertical diffusion, dry adjustment, large-scale condensation and evapora­

tion, deep cumulus condensation, horizontal diffusion and radiation processes. For a 

detailed description of the FSU GSM, see T.N. Krishnamurti, et al. (1988). A brief 

description of the radiation and boundary layer processes is provided in the next two 

sections. 

3.1.1 Description of the radiation processes 

In the FSU GSM, the calculation of radiative fluxes is divided into three parts 

(Chang, C. B., 1980): 1) specification of clouds, 2) long-wave radiation, and 3) short 

wave radiation. 

Long-wave radiation. In this FSU GSM version, the emissivity method pro­

posed by Danard (1969) is used to compute the net longwave radiation at the refer­

ence level. The emissivity of a given atmospheric layer is a function of the optical 

length. For the sake of simplicity, only water vapor is considered in the long-wave ra­

diation flux calculation. The clouds are treated as an infinite isothermal atmosphere 

which radiates as a blackbody and the earth surface is also treated as a blackbody. 

Scattering by air molecules is neglected. Moreover, an isotropic hemisphere is as­

sumed in evaluating the upward and downward irradiances at a reference level. Then 

in a horizontally stratified atmosphere, the upward irradiance at reference level i Fi t 

13 
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can be expressed as 

1wa 8E[w - w·] 
Fi t= u~(l - E[ws - wi]) + u'I'4 a ' dw , 

1Di w 
(3.9) 

where CT is the Stefan-Boltzmann constant, w is the optical path which includes only 

the water vapor distribution, T is the temperature, B denotes either ground or cloud 

top, i refers to the reference level i, E[w - wi] is the flux emissivity which can be 

defined as 

(3.10) 

Here B,,(T) is the Planck blackbody radiance at frequency v and temperature T, 

r,,[w - wi] is the transmission function evaluated for a path length of w - wi. The 

optical path w is defined as 

(3.11) 

where Poo and T00 denote standard pressure and temperature, respectively. 

Similarly, the downward irradiance Fi .J. at level i is given by 

4 110
i 4 8Efwi - wl Fi J.= uTcb(l - E[wi - Web]) - uT . a . dw' 

1Dc1> W 
(3.12) 

where cb refers to the cloud base. For clear sky, Equation 3.12 is reduced to 

F.. 1 _ -lo10
i '""8E[wi - w] d D , +- u l. - a w + , 

0 w 
(3.13) 

where 

(3.14) 

Here D represents the downward infrared irradiance at the top of the model atmo-

sphere, Wtop and T top denote the optical path and temperature at the top of the model 

respectively. Here Wtop = 4.7 x 10-5
, Ttop = l90K. 
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Numerical evaluations of the fluxes make use of tabulations of the emissivity 

following Kuhn (1963). Kuhn's water vapor flux emissivity was measured directly in 

the atmosphere. 

Solar radiation. Diurnal change in the incoming solar radiation S is affected 

by computing the zenith angle of the sun as a function of local time of day and its 

latitude as well as seasonal dependence. The solar radiative fluxes are divided into 

an absorbed part and a scattered part, which are subject to absorption and reflection 

at the earth's surface. The absorbed part is important in the generation of heating 

in the atmosphere, while the scattered part only plays a role in the calculation of the 

ground temperature. The two parts are expressed as follows: 

sa = 0.349S cos(z), 

S' = 0.651S cos(z), 

(3.15) 

(3.16) 

where sa and S' are absorbed and scattered insolation respectively, S is the solar 

constant, z is the zenith angle. The cosine of the solar zenith angle is given by: 

cos(z) =sin(¢) sin(8) +cos('¢) cos(o) cos(hr), (3.17) 

where ¢ is latitude, o is the solar declination angle which is a function of day of year, 

and hr is the hour angle that is zero at solar noon. 

The absorptivity due to water vapor with respect to the absorbed part of insola­

tion is expressed by: 

A[w] = 0.271[w sec(z )] 0
·
303 

• 
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The diffusivity factor 1.66 was considered for the absorptivity of the diffuse (reflected) 

radiation to account for the mean diffusive path of the solar ray. 

The depletion coefficient of a cloudless atmosphere for the scattered part of solar 

energy is estimated by 

a 0 = 0.085 - 0.245 log [_E_ cos(z)] , 
Psfc 

(3.19) 

where PsJc is the surface pressure. The scattering coefficient of the atmosphere with 

multi-layer clouds is calculated by 

(3.20) 

where O!cn is the albedo of the cloud with respect to scattered insolation and n is the 

number of cloud layers. 

For clear sky, the downward irradiance of absorbed solar energy at level i is given 

as 

Sf= S"' {1-A[wisec(z)]}- S"' {1-A[wBsec(z)]} ·a,, {1-A[l.66(wB - wi)]}. 

(3.21) 

The downward irradiance of scattered solar energy is given by 

(3.22) 

where a,, is the albedo of the earth's surface, a 0 is the albedo of the atmosphere 

defined by Equation 3.19. 

For the case of the one-layer cloud, the absorbed insolation is calculated as follows: 

16 
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• Above the cloud: 

Si = sa {1 - A[wi sec(z)]} -

sa {1- A[WctSec(z)]}. ac {1- A[l.66(Wct - Wi)]} ' 

where ct refers to the cloud top. 

• Within the cloud: 

where A[wci] is the absorptivity of the cloud and Wei is the equivalent amount 

of water vapor in the cloud. 

• Below the cloud: 

s; - sa{l - A[wctsec(z)]}(l - ac)({l -A[wc + 1.66(wi - Web)]} 

{1 - A[wc + l.66(wB - Wcb)]}a.,{1 - A[l.66(wB - wi)]}) . 

The downward flux of scattered insolation below the cloud is given by 

St = S"(l - !31)/(l - f31as). 

Specification of clouds. Three cloud types (low, middle and high clouds) are 

defined in this model if the relative humidity in a layer exceeds the threshold values. 

The corresponding cloud bases are located at 900, 700 and 500 hPa. The cloud 

amounts were expressed by the empirical formulas: 

CL = 2.94rsoo - 1.94 , 

17 
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CM - 2.0r6oo - 1.0 , 

CH - 1.67r 400 - 0.67 , 

(3.24) 

(3.25) 

where CL, CM and CH are the percentages of low, middle and high clouds estimated 

using the saturation ratio r at 800, 600 and 400 hPa, respectively. A lower limit 

CL, CM, CH = 0 and an upper limit CL, CM, CH = 1 were introduced. It is 

obvious that the cloud distribution evaluated from the above formulas is horizontally 

continuous. 

Seven different configurations of sky conditions plus a clear-sky condition are 

possible. They are defined as following: 

Ci = (1- CL)(l - CM)(l - CH) Clear sky (3.26) 

C2 = CL(l - CM)(l - CH) Low cloud only (3.27) 

Ca =CL·CM(l-CH) Low and middle clouds (3.28) 

C4 =CL·CM·CH Low, middle and high clouds(3.29) 

Cs = CM(l - CL)(l - CH) Middle cloud only (3.30) 

Cs = CH(l-CL)(l -CM) High cloud only (3.31) 

C1 =CM ·CH(l-CL) Middle and high clouds (3.32) 

Cs =CL·CH(l-CM) Low and high clouds (3.33) 

The sum of Cn(n = 1, ... , 8) must equal to one. Thus, for long wave radiation the 

upward irradiance at level i can be calculated by 

8 

Fi t= L CnFin t ' (3.34) 
n=l 
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and the downward irradiance at level i is 

8 

Fi -l.= L CnFin -l., {3.35) 
n=l 

where n denotes the sky condition. 

Similarly, for solar radiation the absorbed insolation is given by 

8 

Sf= 2:CnS~, {3.36) 
n=l 

and the scattered insolation is given by 

8 

s; = LCnSln· {3.37) 
n=l 

The radiative cooling and warming rates are expressed by the divergence of flux, 

i.e., 

(8T) g 8Fi 
at infrared cooling = - Gp 8p ' 

{3.38) 

and 

(8T) g 8Sf 
at solar heatmg = - Gp 8p ' 

{3.39) 

where Fi= Fi -l. +Fit. 

3.1.2 Description of the boundary layer processes 

Surface 8.uxes of momentum, heat and moisture. The computation of 

the surface fluxes of momentum, heat and moisture is based on Monin-Obukhov 

similarity theory and follows the analysis of Louis {1979). The constant flux layer 

is defined as the lowest 20-30 m of the atmosphere where the fluxes of momentum, 

heat and moisture are nearly invariant with height. The frictional velocity u., the 
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characteristic potential temperature fJ., the characteristic specific humidity q. and 

the Monin-Obukhov length L are appropriate scaling parameters for the constant 

flux layer. A detailed description and derivation can be found in Krishnamurti et al. 

(1988). 

The surface fluxes of momentum, heat and moisture can be expressed in terms 

of bulk aerodynamic formulae of the form 

(3.40) 

(3.41) 

(3.42) 

where p is the air density, C p is the specific heat of dry air at constant pressure, g"' 

the ground wetness, FM is positive for downward momentum fluxes and F H and F Q 

are positive for upward heat and moisture fluxes. The subscripts 1 and 2 stand for 

the values on the two levels z1 and z2 where both levels are assumed to be within the 

constant fiu."'C layer. C,,.1 , CH and CQ are the stability-dependent transfer coefficients 

that can be computed using the analytical formulae prescribed by Louis (1979) as 

k2 1 
-

[ln(~/zi)]2 (1 +4.7Ri8 ) 2 ' 

- CQ=CM, 

for stable and neutral conditions (Ri8 > 0 ) and 

CM - k2 [l - 9.4Ris l 
[ln(.zi/zi)]2 1 +c1 IRisl 112 

CH - k' [l _ 9.4Ris l 
[ln(.zi/ z1)]2 1 + c2 IRisl112 
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Cl _ 7.4 X 9.4 k2 [Z2] l/2 

[ln(.zi/ Z1)]2 Z1 
C

2 
_ 5.3 X 9.4 k2 [Z2] l/2 

(ln(.zi/ Z1)]2 Z1 

(3.47) 

(3.48) 

for unstable conditions (Ri8 < 0). The bulk Richardson number Ri8 for the layer 

is given as 

. g 6.z 6.9 
RiB = 9 (6.u)2 ' (3.49) 

where 6.9 and 6.u are the differences of 92, 91 and tti, u1 between the levels z2 and 

z1• Ris is capped at 0.212 for stable conditions to prevent the stability-dependent 

transfer coefficients from becoming very small. 

The surface fluxes of momentum, heat and moisture then can be computed from 

The first level z1 is assumed to be the surface roughness length .zo, where 1l1 = 0 

and 01 = 80 (the surface temperature). The roughness parameter z0 over land areas is 

provided by the input and fixed in the FSU GSM, while Zo over oceans is determined 

using Charnock's formula 

M u;(z0 ) 

Zo = ' g 

where M is a constant and has a value of 0.04. Since the frictional velocity is a 

function of z0 , an iterative process is used to compute z0• The minimum value of z0 

is set to be 1.0 x 10-4m. 

The level z2 is taken as the first intermediate sigma level 0-12 above the earth's 

surface and is always set to be greater than z1• 92 and q2 can be calculated at the level 

.zi from the model's prognostic variables. The velocity u2 is obtained by interpolating 
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u12 at u12 and uo at zo (uo = 0) to 0-12 as the following logarithmic formula: 

The computation of the surface temperature (Bo) is required. Over the ocean, B0 

is the sea surface temperature that is provided by the input file and is a fixed field. 

The saturation specific humidity over the ocean (q1 ) is computed as a function of 

the saturation vapor pressure. Over land, the surface temperature TG ( or Bo ) is 

computed by solving an energy balance equation of the form 

(3.50) 

where Cg is the soil heat capacity, F .J, is the downward longwave flux of radiation 

at the surface, sd the downward shortwave flux of radiation at the surface, a the 

surface albedo, FH and LFq are the sensible and latent heat fluxes respectively, L 

is the latent heat of water, urc is the upward longwave flux of radiation from the 

surface. Assuming the ground storage of heat is neglected (Cg = 0), since the ground 

temperature Tc is used explicitly in the calculation of the surface fluxes of heat FH 

and moisture Fq, the simplified form of Equation 3.50, 

f(Tc) = F .J, -(1 - a)Sd + FH + LFq - u~ = 0, (3.51) 

is solved using the Newton-Raphson iterative scheme. 

A portion of the net radiative flux is used to melt snow over ice-covered oceans 

or frozen land when Tc> 273.15K: 

f(Tc) = f(Tc) + 15 · (273.15 - TG), (3.52) 
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and a portion of f(TG) is fluxed through the ice over ice-covered oceans only at the 

initial time 

f(TG) = f(TG) + (273.15 -TG). (3.53) 

There are four surface types, namely land, ocean, snow-covered land and ice-covered 

ocean. The surface types are fixed. 

The ground wetness 9w is set to unity over oceans while it is a function of the 

surface albedo a 

9w = 0.85 [1 - e-200(0.25-0:)2] ; (3.54) 

9w is set to zero for albedo greater than 253. 9w is greater than zero but less than 

unity. 

Vertical diffusion. The vertical eddy fluxes of momentum, heat and moisture 

are given by: 

8r = !~ [pK8rl ' 
8t p8z 8z 

(3.55) 

where r = u, v, B, and q, p is the air density, K is the eddy diffusion coefficients 

which are determined by 

av 
- 12 az F1(Ri) (momentum), 

KH = KQ = l 2 BV F2(Ri) (heat, moisture). az 

The mixing length l is computed as 

l = kz/(1 + kz/a), 
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where the asymmetric mixing length a is set to 150 m for momentum and 450 m for 

heat and moisture, k is the Von Karman constant. The stability functions F 1 and 

F2 are of the form 

F1 - F2 = 1/(1 + 5Ri)2 (Ri ~ 0), (3.58) 

F1 
1+1.746IRil1/2 - 8Ri 

(Ri < 0), (3.59) - 1 + L746IRil1;2 

F2 
1+1.286IRil1/2 - 8Ri 

(Ri < 0). (3.60) -
1 + 1.286IRil1/2 

The Richardson number for a given layer is expressed as 

(3.61) 

where Bv indicates the virtual potential temperature. 

An upper limit on KM,H is set such that 

K M,H = D,.z2 /86400 ' (3.62) 

if the square of the layer thickness t!iz divided by the computed value of the eddy 

diffusivity is less than one day (86400 s). 

In the FSU GSM, the boundary conditions on the flux of rat the top and the 

bottom of the model atmosphere are set equal to zero. The wind speed between 

two model levels is constrained to be not less than 1.0ms-1• The distribution of 

the surface fluxes within the PBL is parameterized through the use of mixed layer 

theory. For unstable conditions (L < 0), the PBL is assumed to be well-mixed such 

that the vertical profiles of u, v, 8, q are nearly constant with height, therefore 

(3.63) 
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where r = u or v for F8 =FM and r =(}or q for F8 = FH or FQ. 

However, the assumption of a well mixed layer is not valid in stable conditions. 

A parabolic profile of fluxes is assumed in stable conditions, hence we get 

8r l8F -2F8 - = -- = (1- z/HPBL) · 
0t p 8z pHPBL 

(3.64) 

HPBL is set equal to 1.0 km for the distribution of Fn and FQ and 0.75 km for FM 

in the unstable regime, while it is set equal to 0.75 km for the distribution of FM, FH 

and FQ in the stable regime. 

3.2 Modifications in the radiation and PBL processes 

Generally, physical processes are highly nonlinear and involve many on-off 

switches in the parameterization schemes that appear in the code as IF statements de-

pending on the values of model state variables. The presence of these on-off switches 

may introduce discontinuities in the cost function and its derivatives, hence, exag-

gerate the nonlinearity of the nonlinear model. High nonlinearity of the physical 

processes also decreases the validity of the tangent linear approximation, especially 

in the presence of the on-off switches. The high-order nonlinear terms may become 

important after a certain time integration period. Therefore, the validity period of 

the tangent linear model including physical processes is shorter than that of the cor-

responding adiabatic tangent linear model, and the tangent linear approximation of 

the full physics model is not as good as that of the corresponding adiabatic model 

version. 
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For constructing the adjoint model, the forward model is linearized about a basic 

state. The grid point locations and time levels where the on-off switches occur for 

the basic state are passed on to the tangent linear model and the adjoint model from 

the nonlinear forward model and serve as the switching points of the tangent linear 

model and the adjoint model, i.e., the on-off switching points are retained in the data 

assimilation process. The basic assumption made here is that a small perturbation 

<>Xo does not change the grid point and time level where the on-off switch occurs. 

This assumption, however, does not always hold in realistic situation since the on-off 

switch depends on the model state variables. Once the small perturbation changes 

the point and time level of the on-off switch occurrence, the forward nonlinear model 

will be forced to follow a different trajectory, and the cost function and its gradient 

will be expected to experience a jump due to a sudden change of the basic state. 

Some studies have been conducted to understand the effect of the on-off switches in 

the context of data assimilation. Zou, et al. (1993b ), carried out variational data 

assimilation with moist processes using the NM C spectral model directly by ignoring 

the uncertainties caused by the switch related problems. Their results showed that 

the impact of nonlinearities might be ignored except in the near vicinity of frontal 

areas and demonstrated the ability to perform 4-D VAR data assimilation using 

discontinuous physical processes. Vukicevic and Errico (1993) tested the accuracy 

of the tangent linear model of a mesoscale model against the ''true" perturbation 

obtained by direct nonlinear integration and found that the tangent linear model 

and associated adjoint model would be more accurate for a nonlinear model that has 

well-behaved regime transitions. They recommended improving the nonlinear model 
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prior to performing linearization for high nonlinearity of parameterized regime tran­

sitions. Zupanski (1993c) derived the adjoint code of moist processes for NMC/ETA 

regional forecast model. She demonstrated that discontinuities present in the Betts­

Miller cumulus convection scheme increased the linearization errors to a large extent 

and had adverse effects on 4-D VAR data assimilation. She modified the scheme 

by applying a vertical smoothing to the layers of transition to render them more 

continuous before linearization. Tsuyuki(1996a) found a better convergence rate of 

the minimization algorithm in his study after he removed most of the zeroth-order 

discontinuities that existed in the moist processes prior to performing the variational 

assimilation, but he also found that this treatment would introduce another diffi­

culty, i.e., the cost function had a large local gradient, which degraded the efficiency 

of the minimization process and could even cause the minimization process to fail. 

Recently, Bao, J-W, et al. (1995) applied the calculus of variations to confirm that 

variational data assimilation using adjoint method allowed the assimilation model 

to have a finite number of first-order discontinuous points while the presence of step 

functions imposed serious difficulties on the data assimilation. Their study provided 

a better insight into the feasibility of the application of the adjoint method to a 

model with on-off switches. 

Since we aim to keep the original physical parameterization characteristics un­

changed as much as possible, only function discontinuities which most impact the 

tangent linear approximation and the convergence rate of the minimization algorithm 

were considered as candidates for removal, even though there are numerous on-off 

switches in the full-physics FSU spectral model. 
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In the radiation processes, numerical evaluations of the fluxes make use of tabu-

lations of the emissivity following Kuhn (1963). Kuhn's water vapor flux emissivity 

was measured directly in the atmosphere. Linear interpolation, which is discontin-

uous in its first derivatives, was applied in the original code. Once an interpolating 

point falls into a different segment due to a small perturbation, its first derivative 

will experience a jump in its magnitude. Since there is no analytical expression for 

the water vapor flux emissivity, and since we want to keep the curvature of the in-

terpolation to be minimum, a cubic spline algorithm proposed by Stephens (1996) is 

applied to fit the unequally-spaced, presumably errorless observations of the water 

vapor flux emissivity. It is presumed that ordered data {y(x1), j = 0, J} are given 

at (J + 1) distinct, but unequally-spaced sample points {x;} in [xo,XJ], the form of 

the interpolating cubic adopted is 

H;(x) = s;~1 [ (x; -;.i x)3 - fl; (x; - x)] 

Sj [(X - Xj-1)
3 

A ( >] +- -u· x-x· 1 6 fl. 1 1-
1 

(x; - x) (x -X;-1) 
+Y;-1 fl; +Yi fl; ( j = 1,2, ... ,J) . (3.65) 

The increment fl; is defined as 

fl; = Xj - Xj-1 , 

where {s;} are the polynomial second derivatives. The integrity of the observations 

is maintained in this fitting. 

Another type of discontinuity is introduced by the definition of the three cloud 

types that are defined in this model when the relative humidity in a layer exceeded 
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the threshold values. For the sake of simplicity in calculating the fluxes, the cloud 

levels are fixed, i.e., they are taken to be identical to the ones of the nonlinear model, 

only the discontinuities in the saturation ratio rare alleviated as in Tsuyuki (1996a) 

by using a smooth function 

( 
RH-RHCO )2 

F(RH) = 1. - 0.5 RHC-RHCO ' 

where RHC is the threshold value and RHCO is a specified value. In this model, 

RHC is 0.66, 0.5 and 0.4 for low, middle and high cloud respectively, RHCO is taken 

as 0.64, 0.48, 0.38 correspondingly. However, our experiments show that the impact 

of such modification can be neglected. 

The boundary layer processes contain many on-off switches, but only the discon-

tinuities in the function itself are considered for removal. 

In calculating the eddy diffusivity KM,H' an upper limit on KM,H is set. A smooth 

function, 

1 
F(x) = , 

1 +eZ 

is employed to remove this discontinuity. 

Hence, the computed eddy diffusivity KM,H and the upper limit KOM,H can be 

combined as follows: 

(3.66) 

where x = 5(86400 - tlz2 / KM,H ). Hence, for the eddy diffusivity, we will adopt the 

value of KM,H when tlz2 / KM,H is larger than 86400, otherwise, it will tend to be 

KOM,H· 
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Figure 3.1: The configuration of the smooth function F(x) 

The distribution of the surface fluxes within the PBL is parameterized through 

the use of mixed layer theory for unstable conditions (L < O) and through the use of 

a parabolic profile of fluxes for stable conditions (L > 0), i.e., 

and 

F, 
pHpsL2 ( z < HPBL2 and L < 0) , 

(otherwise) 

! 
l BF _ -2F, (1 _ z/H ) 

: = : Bz - pHpsL> PBLI 
( z < HPBLl and L > 0) 

( otherwise ) 

(3.67) 

(3.68) 

The same smooth function F(x) is applied to remove the discontinuities in this 

instance. The modified scheme is given as following: 

F8 ( ) ( ) -2F8 
H • F Xi • F X2 + H (l - z/ HPBL1) • F(-x1) • F(x3), (3.69) 

P PBL2 P PBLl 
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Figure 3.2: The configuration of the smooth function F(x1) · F(x2 ). 

where 

5 L, 

z - HPBLl. 

The smooth function of F(xi) · F(x2 ) is shown in Fig. 3.2. 

(3.70) 

(3.71) 

(3.72) 

3.3 Tangent linear model of the radiation and boundary layer processes 

3.3.1 Coding the tangent linear model 

In order to obtain the exact discrete tangent linear model of the nonlinear model, 

the tangent linear model is developed directly by linearizing the discrete nonlinear 
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model around a basic trajectory subroutine by subroutine, loop by loop, and line by 

line. 

With a three time level scheme applied, the nonlinear model assumes the following 

form: 

X(to + 8t) - F1(X(to)), 

X(tr + 8t) - F2(Xi, X2), 

(3.73) 

(3.74) 

where F1 and F2 are nonlinear operators, X denotes the model variable vector, at is 

the time-step, t0 is the initial time level, and tr represents any time level during the 

integration period, vector X 1 = X(tr - 8t) and X 2 = X(tr)· 

Linearizing the nonlinear model in the vicinity of a basic trajectory, we obtain 

the corresponding tangent linear model for 8X(tr ), the perturbation of the state 

variables at time tr 

8X(to + 8t) - BFi~~(to)) 8X(to), (3.75) 

8X(tr + 8t) - BF2~i~ X2) 8X1 + BF2~i: X2) 8X2. (3.76) 

The perturbation variable 8X(tr) at time level tr can be obtained by integrating 

the tangent linear model from the initial condition 8X(t0 ). In a compact form, the 

tangent linear model may be written as in Navan, et al. (1992c). 

(3.77) 

where Pr represents the result of the multiplication of all operator matrices to obtain 

8X(tr) from 8X(to). 
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A basic trajectory (or basic state) and some intermittent variables computed 

from the nonlinear forward model are required in the tangent linear model. These 

variables should be stored for the tangent linear model or can be re-calculated in the 

tangent linear model depending on the memory and computational cost available on 

the particular computing platform. 

3.3.2 Notational convention for variables and subroutines used in the 

tangent linear model 

The same variable name is employed for the model state variable in the nonlinear 

forward model as the one used for the perturbation variable in the tangent linear 

model. The same common block name is also used for both the nonlinear forward 

model and the tangent linear model. 

The variable name of the basic trajectory in the tangent linear model is denoted 

by the same name as in the nonlinear forward model with a suffix "9". Care should 

be exercised to a special case when a basic state variable is redefined, usually, a suffix 

"8" is given to the redefined basic state variable. 

The name of the tangent linear subroutine is the corresponding nonlinear sub­

routine name with a prefix TAN. For instance, the nonlinear subroutine SFLX has a 

corresponding tangent linear code TANSFLX. 
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3.4 Adjoint model of the radiation and boundary layer processes 

3.4.1 Coding the adjoint model 

In time discretized form, the cost function to be minimized is given as following 

(3.78) 

where Xo is the control variable, a vector of dimension N, representing the initial 

state of the model; X contains all model variables; zob.s represents observational data 

distributed over some space and time interval, which is a vector of dimension M; H 

is a transformation matrix that maps the model variables to the observations; W is 

an M x M diagonal matrix of weighting coefficients. The values of the elements are 

usually determined by dimensional scaling of various variables, relative importance 

and quality of the data set and other considerations. Generally, W(t) may be taken 

as the inverse covariance matrix of the observation errors. However, since additional 

studies are required in order to obtain the observation errors, in the following ex-

periments, the diagonal elements of W(t) are set to be like Navon, et al. (1992c), 

i.e., the inverse of the square of the maximum difference among each observational 

variable data to ensure that all terms in the cost function are of approximately the 

same order of magnitude. The superscript ( )T denotes the transpose operator. tr 

represents the time when the observation occurs in the assimilation window, R is the 

total number of time levels when the observations are available. 

From section 3.3.1, we see that the tangent linear model can be written in a 

compact form Equation 3.77, then, the first variation of Equation 3.78 may be written 
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as follows: 

R 

J'(b"X(to)) = 2: ([VxHfW(H(X)(tr) - zob"(tr) ), Prb"X(to)) , 
r=O 

(3.79) 

i.e., 
R 

\7 J(X(to)) = L P,![VxHf w (H(X)(tr) - zob.!(tr)) ' 
r=O 

(3.80) 

where P,! are the corresponding adjoint operator of the linear operator Pr in the 

tangent linear model. 

Therefore, the adjoint code is developed directly from the basic direct code, the 

tangent linear code. If we view the linear model as the result of the multiplication 

of a number of operator matrices: 

where each ~ represents a subroutine or Do loop. Then the adjoint model can be 

viewed as 

PT-AT ATAT r - N··· 2 1, 

i.e., the adjoint model is written backward from the tangent linear model line by 

line, subroutine by subroutine (Navon, et al. 1992c). 

Some simple examples illustrating how to develop the discrete adjoint code from 

the tangent linear code were provided by Navon, et al. (1992c), and Yang, et al. 

(1996). We also provide an example in the APPENDIX for deriving the tangent 

linear code and the adjoint code from the original nonlinear code. Here we only 

address some special cases which were encountered in deriving the adjoint for the 

physical processes in this particular model. 
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Since an original subroutine might be called several times in a numerical model 

with different variables being calculated each time, it is very important to distinguish 

which variable is active and which is inactive in every call. The inactive variable 

should always be set to zero in the adjoint code. Otherwise an error will be introduced 

in the adjoint code. 

Another particular case is the iterative process. In order to write the adjoint code 

of an iterative process, one can either develop the adjoint operator directly from the 

analytic formula if an analytic formula is available, or one has to write an iterative 

adjoint code. To do the latter, one has to store or calculate the basic state used in 

every iteration and the total iterative number used in the nonlinear model prior to 

the adjoint operator being calculated. One should always keep in mind at all times 

that the basic state used in each stage of the adjoint code should be the same as that 

used in the corresponding nonlinear code. 

The third special case is when a table lookup is used and then an interpolation 

is applied to obtain the values needed in the nonlinear model. Generally, linear 

interpolation is sufficient in the nonlinear model, however, since the adjoint code 

is the adjoint operator of the tangent linear model and the tangent linear model is 

linearized around a basic state, the first derivatives at the nodes are not continuous 

when a linear interpolation is used. The smaller the interval between two nodes 

is, the more serious the problem which the interpolation might introduce into the 

adjoint model. There are two ways that can be used to resolve this problem. One is 

to employ the analytic formula that generates the table and write the adjoint code 

directly from the analytic formula. However, it is usually the case that the direct 
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calculation from the analytic formula is so time-consuming that a table is constructed 

precisely to avoid such complex calculation. The other way, which is more practical, 

is to apply an interpolation with better continuity properties, such as a cubic spline 

where the function itself and its first derivatives as well as its second derivatives are 

continuous, hence, its adjoint code will perform very well. Also a further refinement 

can be obtained by keeping the curvature of the cubic spline to the minimum as we 

did in the radiation processes (see section 3.2). 

The involvement of many nested conditional GO TO statements does not cause 

trouble for the nonlinear model, however, in the adjoint model, special care must be 

taken to ensure that every route is included and handled properly. It is recommended 

to figure out the total number of combinations of all routes the basic state might 

take, and rewrite the nonlinear code using IF and END IF pairs as much as possible. 

A basic trajectory (or basic state) and some intermittent variables computed 

from the nonlinear forward model are required in the adjoint model. These variables 

should be stored for the adjoint model or re-calculated in the adjoint model depending 

on availability of memory and/or computational cost for the given computational 

platform (see Restrepo, et al. 1997). 

3.4.2 Adjoint correctness check and the gradient check 

Since a minor error may result in an incorrect gradient of cost function with 

respect to the control variables, it is necessary to verify the correctness of the adjoint 

code segment by segment. A final gradient check should also be performed. For a 
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detailed description of the verification of correctness, see Navon, et al. (1992c). Here 

we just provide a brief description. 

Each of the adjoint operators (either a single DO loop or a subroutine) may be 

checked by applying the following identity: 

where Q represents the input, A denotes any tangent linear operator and AT denotes 

the corresponding adjoint operator. If the above identity holds, the adjoint code is 

correct for the corresponding tangent linear code. 

Care must be exercised when carrying out the adjoint check since the present 

numerical forecast model is very complicated and detailed, especially when the phys­

ical processes are included. For instance, the FSU GSM divides the terrain as land, 

ocean, land with snow, and ocean with ice, there are many combinations of sky con­

ditions in the radiation processes, and most importantly, a large number of on-off 

switches specify different trajectories under different conditions. Hence, a complete 

set of data should be chosen to serve for the purpose of the adjoint check in order to 

ensure that every route is being examined. 

Even though each subroutine passes the adjoint check separately, errors may still 

be introduced at the stage where the subroutines are linked together. Therefore, the 

adjoint check should be applied again once all the subroutines are linked together. It 

is necessary that the adjoint check of the integration of the whole model be carried 

out. The nonlinear normal mode initialized 18-hour forecast starting from 12UTC 

June 24, 1994 ECMWF analysis data is utilized to perform the whole model adjoint 
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check for 1-hour integration (3 time-steps) by using the above identity and the full 

physics package adjoint check simultaneously by using 

(X, AY) = (AT X, Y) , 

where X and Y denote the inputs of the adjoint code and the tangent linear code 

respectively. The zonal mean value serves as the initial condition of the nonlinear 

model, while the deviation is used as the initial condition for the tangent linear 

model. The results we got are accurate to 12 digits on a CRAY J916. 

The gradient check is carried out to verify the correctness of the whole adjoint 

model. Given a small perturbation ah to the initial conditions X0, where a is a 

small scalar and h is a vector, the cost function may then be expanded by using the 

Taylor expansion 

J(Xo +ah) = J(Xo) + ahTV J(X0 ) + o(a2
), 

i.e., 

J(Xo +ah) - J(Xo) 
<P(a) = ahTV J(Xo) = 1 + o(a), (3.81) 

for small a but not too close to machine accuracy, the value of ¢(a) should be close 

to unity if the gradient is correct. All terms in the cost function are of approximately 

the same order of magnitude. Since the gradient components of the cost function 

with respect to different control variables may differ by several orders of magnitudes 

from each other, the vector h here is taken as h = S2V J as in Tsuyuki (1996b) 

so that the small perturbation is of the same order of magnitude for each variable. 

In our case, S is a diagonal scaling matrix with s,, Sn, ~-T,,, Sln(P.) and Srv as 

39 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

5.5 
5 

4.5 
4 

J.5 - J c 
.s::: 2.5 a. 
c 2 

.......... 1.5 J: 
Cl. 

0.5 
0 

-0.5 
-1 

-1.5 
-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -J -2 

LOGl O(alpha) 

Figure 3.3: Variation of <fJ(o:) with respect to loga. 

submatrices. The diagonal elements are 10-ss-1 , 10-ss-1 , 5K, 1.5 x 10-2 and lOK 

for Si;: Sn: ST-Td' S1n(P.) and ST., respectively, so that each component is of order 

unity. 

We present here the result for the gradient check in Figure 3.3. The integration 

period is six hours from 06UTC June 25, 19941 to 12UTC June 25,1994 and model 

generated observations are used. The initial guess X 0 is set to be the initial condition 

to which a small random perturbation is added on the Gaussian grids. It is shown 

that the value of </J(a) approaches unity when a varies from 10-3 to 10-10• 

Once the values of cost function J and its gradient with respect to the control 

variables are available, the minimal value of the cost functional with respect to the 
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control variables is obtained by applying iteratively an efficient large-scale uncon­

strained minimization algorithm until a suitable convergence criterion is satisfied 

(i.e., 11 v J 11 ::; €). 

3.4.3 Notational convention for variables and subroutines used in the 

adjoint model 

The same variable name is employed for the model state variable in the nonlinear 

forward model as that used for the adjoint variable in the adjoint model. The same 

common block name is also used for both the nonlinear forward model and the adjoint 

model. 

The variable name of the basic state in the adjoint model is denoted by the same 

name as in the nonlinear forward model with a suffix "9" . Attention should be paid 

to a special case when a basic state variable is redefined, usually, a suffix "8" is given 

to the redefined basic state variable. 

The name of the adjoint subroutine is the corresponding nonlinear subroutine 

name with a prefix ADJ. For instance, the nonlinear subroutine SFLX has a corre­

sponding adjoint code ADJSFLX. 
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CHAPTER4 

BASIC FORMALISM OF 4-D VAR 

The mathematical basis of variational data assimilation involves optimizing a cost 

function subject to a set of constraints, i.e., the governing equations and boundary 

conditions. In optimal control theory, the optimal values of the control variables 

(initial conditions, model parameters or boundary conditions) can be found using 

the large-scale unconstrained minimi7.3.tion algorithm provided information about 

the cost function and its gradient with respect to the control variables is available. 

The 4-D VAR data assimilation determines the model trajectory evolution which 

minimizes a cost function. The general cost function can be defined as the following 

functional (Lorenc 1986) where the model serves as a strong/weak constraint: 

J(Xo) = ~ f (Zn - Z'::8fW(Zn - zc;:'a) 
n=l 

1 M M 

+2 E E <P~Q~~1;<P1c 
k=l m=l 

+.!_ (Xo - X,,)TB-1(Xo - Xb) 
2 

+gravity wave penalty (4.1) 

with the forecast model G and a post-processing operator H that maps the model 

variables to the observations defined by 

~ - G(Xm-d +<Pm 

Zn - Hn(~) +en 
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where the superscript T stands for a transpose, obs denotes observations distributed 

over some space and time interval, b denotes a background value, the index n rep­

resents observational times, and indexes m and k are model time steps. X 0 is the 

control variable, representing the initial state of the model or other model param­

eters; X{t) is a vector containing all model variables. W is a weighting matrix. 

Generally, it can be taken as the inverse covariance matrix of the observation errors. 

Matrices B and Q are background and model error covariances, respectively. The 

model error correction term </>m accounts for the model error growth from time tm-l 

to time tm. For simplicity, the observational error €n can be considered to be sta­

tionary and white in space and time, with the mathematical expectation equal to 

< €n€f >= w-1
d"n,k· In our experiments, we neglect En in Equation 4.3. That is, 

the transformation matrix His taken as a strong constraint. Moreover, the model is 

assumed to be perfect, i.e., the forecast model is also applied as a strong constraint, 

and the background term is neglected. In the following, we present a continuous 

form of 4-D VAR data assimilation formalism. 

Suppose the cost function measures the sum of the discrepancies between the 

observations and the model forecasts in the following way: 

J(Xo) =~Iota. {H(X)(t) - zob"'(t))TW(H(X)(t) - zob"'(t))dt {4.4) 

Almost all large-scale unconstrained minimiution algorithms require the user to 

supply the values of the cost function J and the gradient of the cost function with 

respect to the control variables. The value of cost function J can be obtained by 

integrating the forecast model forward, while the gradient of the cost function can 
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be calculated most efficiently through the deployment of the adjoint method, i.e., 

integrating the adjoint model backwards in time. For the purpose of the following 

discussion, the governing equation of a numerical model will be written as 

ax 
f)t 

- F(X,t) 

X(O) - Xo 

(4.5) 

(4.6) 

where F is the nonlinear operator matrix. The values of X(t) can be obtained by 

integrating the model from the initial condition Xo. The perturbation variables may 

be obtained as the solution of the tangent linear model: 

8t 
BF 

- [axl(X, t) c5X 

tSX(O} - iJ 

(4.7) 

(4.8) 

where &Xis the perturbation vector, Xis the model state vector, and U is a small 

perturbation of the initial conditions. For the definition of the adjoint operator, let 

us consider two Hilbert spaces, E and F, with inner products denoted by (, )E and 

(, )F respectively. Let Y-+ AY be a continuous linear operator from E into F. There 

exists a unique continuous linear operator A• from F into E such that the following 

equality between inner products holds for any Y belonging to E and any X belonging 

to F: 

(X, AY}F = (A• X, Y}E 

where A• is called the adjoint operator of A. 

In the finite.-dimensional case, if(,) represents the Euclidean inner product, the 

matrix associated with A• is simply AT the complex conjugate transpose operator of 
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A. Since a small perturbation 5X(O) will result in a change in the cost function, the 

directional derivative of the cost function Jin the 5X(O) direction is expressed as, 

(4.9) 

Introducing the adjoint equation 

(4.10) 

(4.11) 

where the variable S denotes the adjoint variable, the right hand side of Equation 4.10 

is called the forcing term. Then, the gradient of the cost function with respect to 

the control variables, here taken to be the vector of initial conditions, is given as 

VX-OJ = S(O) (4.12) 

Therefore, the gradient of the cost function can be obtained by integrating the ad-

joint model backward in time from the final time step to the initial time step with a 

proper forcing term consisting of the difference between values of forecast and obser-

vation (measured at the observation time and space location) when an observation 

is encountered. 

Once the values of cost function J and its gradient with respect to the control 

variables are available, the optimal initial conditions can be obtained by applying 

a carefully chosen robust large-scale unconstrained minimization algorithm. Among 

such algorithms, the limited-memory quasi-Newton and truncated Newton methods 

were found to be most efficient in atmospheric sciences (see Navon 1992a, 1992b, 
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Zou et al. 1993a, Wang et al. 1997). The algorithm used in this study is Liu and 

Nocedal's Limited-memory quasi-Newton algorithm, namely the L-BFGS method 

{Liu, et al. 1989). 

4.1 The minimization algorithm 

Part of the 4-D VAR approach consists of minimizing the cost function J directly 

by an iterative unconstrained minimization algorithm using first-order derivative in­

formation of the cost function with respect to the control variables. Two classes of 

minimization algorithms are most commonly used for large-scale unconstrained min­

imization problems. The two algorithms are limited-memory quasi-Newton {LMQN) 

and truncated Newton methods. Limited-memory quasi-Newton methods can be 

viewed as the extensions of conjugate-gradient methods. They are developed to 

combine the convergence properties of the quasi-Newton methods and the low re­

quirements of conjugate-gradient methods associated with the evaluation, storage 

and inversion of the Hessian. Truncated Newton methods on the other hand at­

tempt to preserve the rapid quadratic convergence rate of Newton methods while 

keeping storage and computational requirements feasible for large-scale applications. 

Navon and Legler (1987) compared a number of different conjugate-gradient and 

limited-memory quasi-Newton methods for problems in meteorology and concluded 

that the Shanno-Phua (1980) limited-memory quasi-Newton algorithm was the most 

appropriate for their tests. Liu and Nocedal (1989) showed that the L-BFGS method 

is one of the best limited-memory quasi-Newton methods available to date. Navon 

(1992a), Navon{1992b) and Zou et al. (1993a) further compared four limited-memory 
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quasi-Newton methods and two truncated Newton methods. Their results showed 

that the L-BFGS method of Liu and Nocedal (1989) had the best overall perfor­

mance. A review of several LMQN methods was presented in their paper. The 

L-BFGS method of Liu and Nocedal (1989) will be used in our study. For appli­

cations of the truncated Newton methods see Wang et al. (1995) and Wang et al. 

(1997). 

The basic procedure of the limited-memory quasi-Newton methods for minimizing 

J(X), XE RN is described below: 

• Step 1. Starting with an initial guess of Xo and a positive definite initial 

approximation to the inverse Hessian matrix Ho (generally the identity matrix 

I is chosen). 

• Step 2. Compute the gradient of J with respect to the control variable X 

go = g(Xo) = V J(Xo) , 

and set the search direction 

do= -Hogo. 

• Step 3. For k=0,1,2, ... , minimize J(Xk + etkdk) with respect to et ;::::: 0 to 

obtain xk+l as 

where Ctk is a positive scalar, the steirsize obtained by a line search to satisfy 

sufficient decrease. 
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• Step 4. Compute 

• Step 5. Compute a new search direction 

• Step 6. Check whether the solution is convergent. If the convergence criterion 

II 91r.+i II s. € max (1, 11 xk+I ID 

is satisfied, where € is a user supplied small number, then the algorithm ter-

minates with xk+l as the optimal solution; otherwise the process is repeated 

from Step 3. 

For the line search a unit step length is always tried first. A line search using 

cubic interpolation is applied only if the Wolfe condition is not satisfied, which is 

expressed as 

J(X1r. + a!1r. d1r.) < J(Xk) + f3' ll!kfif d1r. 

I 
'VJ(X1r. + a1r. d1r.)T d1cl 5. f3 

g'fd1c 

where {3' = 0.0001 and f3 = 0.9. A more accurate line search may be performed by 

using a small value for {3. The first inequality is designed to ensure that the function 

is reduced sufficiently, while the second is used to prevent the step lengths from being 

too small. 
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4.2 Scaling 

It is well-known that the condition number of the Hessian matrix, which is defined 

as the ratio of its largest to its smallest eigenvalues, determines the rate of conver­

gence and sensitivity to round-off errors of descent algorithms for computing the 

minimum of the cost function. When the ratio is large, the matrix is ill-conditioned; 

when it is close to unity, the matrix is well conditioned. When the Hessian is ill­

conditioned, the convergence rate is very slow and sometimes the minimization pro­

cess might even fail. 

Appropriately scaling variables may improve the condition number of the Hessian 

matrix. In the minimization algorithms, convergence tolerance and other criteria 

usually are based on the implicit definition of "small" and "large", hence variables 

with widely varying orders of magnitude may cause difficulties. There is no general 

rule to determine the best scaling factors for all minimization problems, and it is 

problem dependent. A basic rule of scaling is to convert the variables from the 

physical units to computational units during the minimization process so that the 

variables of the scaled problem are of similar magnitude and of order unity in the 

region of interest. A simple transformation commonly used is of the form 

x=Dy 

where { x;} are the original variables, {Y;} are the transformed variables, and D is 

the constant diagonal matrix, whose j-th diagonal element may be set to a typical 

value of the j-th variable. The gradients of the cost function are also scaled. The 

original gradients g, the transformed gradients gy, the original Hessian H, and the 
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transformed Hessian Hy are related by 

9y =Dg 

Thus we can see the effect of the transformation on the Hessian. Appropriate scaling 

can significantly alter the convergence rate of the minimization algorithm. Further 

refinement can be done by utilizing a preconditioning process (Yang, et al. 1996, 

Zupanski 1996, Axelsson 1994). 

In this study, the scaling constants for different variables are calculated following 

the method of Navon et al. (1992c): 

( 4.13) 

and similarly for the other variables. 

4.3 The twin experiment 

A twin experiment was carried out using the FSU GSM and its full-physics adjoint 

model to ensure that the assimilation system is properly constructed. For such an 

experiment, one knows in advance the exact solution, and the minimum value of the 

cost function is zero. However, due to the high nonlinearity of the model including 

the full physical processes, the convergence rate is expected to be much slower than 

that of the adiabatic version, and the cost function may have multiple minima. This 

can be seen by studying the convexity of the cost function. For a simplified cost 
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Figure 4.1: Schematic illustration of the twin experimental design 

function defined as 

its Hessian matrix is expressed as, 

(4.14) 

(4.15) 

where the weighting matrix W is symmetric and semipositive definite, and the second 

term is due to the nonlinearity of the model F. Due to the existence of the second 

term the Hessian matrix can not be guaranteed to be positive definite. The cost 

function may have several relative minima and maxima as well as saddle points. 

Therefore, the retrieved solution may not be unique. In such cases, a regularization 

approach may be used (Tichonov, 1977) . The quality of the retrieved optimal initial 

condition depends greatly on the initial guess of the initial condition. More detailed 

structure of the initial guess will be necessary for obtaining a good result. 

The FSU GSM was integrated 24 hours from the initialized ECMWF analysis 

at 12UTC June 24, 1994, and 12UTC June 25, 1994 was set to be the time level 
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t=-6 h. The assimilation window is set to be 6 hours from 12UTC June 25, 1994 

to 18UTC June 25, 1994. The observation fields are generated by the full-physics 

nonlinear model and are assumed to be available at the beginning and the end of the 

assimilation window at each Gaussian grid point. The !Sh-forecast starting from the 

initialized ECMWF analysis at 12UTC June 24, 1994, i.e., the forecast at 06UTC 

June 25, 1994 was taken as the initial guess of the model initial condition. For 

this T42L12 version of FSU GSM, the control variable vector consists of the initial 

conditions of vorticity, divergence, dewpoint depression, the logarithm of the surface 

pressure and the virtual temperature. Its dimension is 128 x 64 x (3 x 12 + 10 + 

1) = 385024. Both the forward nonlinear model and the adjoint model used in the 

following experiments include the full physical processes. 

The cost function used in this experiment is defined to assume the following form 

(4.16) 

where obs denotes the observational data. The diagonal elements of the weight matrix 

w with w{, w D1WT-Td' W1ogP,,, WTv being the block submatrices are taken as 

the inverse of the square of the maximum difference of each observational variable 

between the two time level observations. 

Fig. 4.2 displays the variations of the cost function and the gradient norm with 

respect to the number of iterations in the minimization process. The cost function 

value decreases two orders of magnitude after 60 iterations with 70 function calls, 

and we observe that it decreases to 22. 73 of its original value after 20 iterations 

with 21 function calls. The gradient norm decreases to 16.83 of its original value in 

52 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

60 iterations. This pattern corresponds to the fact that most of the decrease in the 

cost function occurs during the first minimfaation iterations (see also Navon et al. 

1992c). 

It is worthwhile to consider the difference fields between the retrieved and the ref­

erence (observational) fields before and after the minirni7.ation process, since these 

difference fields measure the ability of the 4-D VAR data assimilation to retrieve 

the observational fields. Fig. 4.3 shows the difference fields of divergence, vorticity, 

temperature and the logarithm of the surface pressure between the retrieved and 

the reference (observational) fields at the beginning of the assimilation window after 

the minimi74tion process was carried out. Comparing these with the same differ­

ence fields (Fig. 4.4) prior to the minimization process, it is observed that after the 

minimization the maximum difference values are reduced by at least one order of 

magnitude in all the difference fields, namely, those of divergence, vorticity, temper­

ature and the logarithm of the surface pressure. 

The &V1S errors of the retrieved initial conditions and the initial guesses of initial 

conditions are shown in Fig. 4.5. All the control variables are improved throughout 

the entire range of vertical levels. The RMS error of the surface variable, the log­

arithm of the surface pressure, decreases from 0.16956E-02 to 0.10207E-03. Having 

obtained the optimal initial conditions at t=O, we integrate the forecast model for 6 

hours from the retrieved initial conditions to obtain the analysis field at the end of 

the assimilation window. The RMS error results are presented in Fig. 4.6. A similar 

trend to that found for the control variables is evident and the RMS error of the 

logarithm of the surface pressure decreases from 0.15543E-02 to 0.21654E-03. The 
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Figure 4.2: Variations of the cost function and the gradient norm with respect to the 
iteration number of the twin experiment. 
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Figure 4.3: Difference fields of vorticity (top left), divergence (top right), logarithm 
of surface pressure {bottom left), temperature {bottom right) between the retrieved 
and the reference fields at level 8 at the beginning of the assimilation window after 
the rninirnfaation process was performed. 
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Figure 4.4: Difference fields of vorticity (top left), divergence (top right), logarithm 
of surface pressure (bottom left), temperature {bottom right) between the retrieved 
and the reference fields at level 8 at the beginning of the assimilation window before 
the minirni?.ation process was performed. 
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RMS error of every variable decreases by one order of magnitude at almost all the 

vertical levels. 

In this chapter, we presented the basic formalism of 4-D VAR data assimilation 

using the full-physics adjoint in a twin experiment. A reasonable reduction in the cost 

function was achieved, and the quality of the retrieved initial conditions was found to 

be satisfactory. This experiment demonstrated the numerical feasibility of 4-D VAR 

data assimilation with the full-physics adjoint model of the FSU GSM to retrieve 

the initial conditions. Its results indicated that the assimilation system was properly 

constructed. In the following chapters, the 4-D VAR data assimilation system was 

applied to carry out numerical experiments on variational data assimilation, adjoint 

parameter estimation and sensitivity analysis using ECMWF analysis data. 
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CHAPTERS 

IMPACTS OF THE OPTIMAL INITIAL CONDITIONS AND THE 

OPTIMALLY IDENTIFIED KEY PARAMETERS ON THE 

PERFORMANCE OF THE FSU GSM 

5.1 Characteristics of the parameters 

One of the objectives of this dissertation is to optimally identify several param­

eters of importance in the various physical packages, an endeavor made possible by 

the availability of the adjoint of the full physics version of the FSU GSM. Parameter 

estimation refers to the determination of the unknown parameters in the model from 

observed data such that the predicted response of the model is close in some sense 

to the process observations. As we know, many parameters in the NWP model are 

empirically determined. The selection of the set of important parameters to be esti­

mated can be made dependent on experience with the FSU GSM performance, or it 

can be determined using a relative sensitivity analysis by ranking a set of chosen pa­

rameters in the order of their relative sensitivities to selected model responses. This 

is explained in greater detail in APPENDIX A. In this study, three parameters were 

chosen to be optimally identified based on numerical experience with the FSU GSM. 

These three parameters are the bi-harmonic horizontal diffusion coefficient ~, the 

ratio, "'(, of the transfer coefficient of moisture to the transfer coefficient of sensible 

heat, and the Asselin filter coefficient FG. 
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The horizontal diffusion term is usually incorporated in a numerical weather pre­

diction model to parameterize the effects of motions on the unresolved scales and to 

inhibit spectral blocking, the growth of the amplitude at small scales in the dynamic 

model variables due to the accumulation of energy in the shorter wave range. It is 

also employed to eliminate the aliasing effect (Phillips 1959). When a solution is 

obtained on a grid of spacing !:ix the smallest wavelength that can be resolved is 

2/:ix. The energy associated with wavelengths shorter than 2/:ix reappears associ­

ated with longer wavelengths. This phenomenon is referred to as aliasing (Hamming 

1973). Unfortunately, the aliased shortwave contribution to the solution distorts the 

true longwave solution and may even cause instability (referred to as nonlinear insta­

bility) (Phillips 1959) when very long time integrations are made. The presence of 

any dissipation, physical or computational, can attenuate the amplitude of the short 

wavelengths very significantly. In this case the errors introduced by aliasing are 

minimal. MacVEAN (1983) showed that v,.ithout dissipation, integrations exhibited 

physically unrealistic features after several days even with very high mesh resolu­

tion, indicating the crucial role played by the dissipation in the non-linear baroclinic 

development. Considerable efforts have been made by various groups in tuning the 

dissipation parameterizations in their general circulation or forecast models. For in­

stance, Phillips (1956), Smagorinsky (1965), Lilly (1965), Leith (1965) and Richard 

(1965) applied eddy diffusion terms in their numerical models. Navon (1969) included 

the lateral viscosity in a two level general circulation model and computed a 62 day 

integration, comparing its impact to that of using the Matsuno dissipative scheme. 

Kanamitsu, et al. (1983, 1989) and Gordon, et al. (1982) employed a bi-harmonic 
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horizontal diffusion in their experiments. Presently, the bi-harmonic horizontal dif-

fusion is used worldwide in NWP models due to its better scale selectivity. One 

drawback, however, is its lack of a sound physical foundation. Some other horizontal 

diffusion schemes are also employed, such as the scheme developed by Leith {1971) 

based on turbulence theory which is now implemented in the NCEP spectral model 

(Kanamitsu, et al., 1991). 

The bi-harmonic horizontal diffusion, K. \74 , is used for vorticity, divergence, 

dewpoint depression and virtual temperature in the FSU GSM to selectively control 

small-scale noise without affecting large scales. The e-folding diffusive decay time at 

total wavenumber n is given by 

1 a4 

r(n) = ~ n2(n + 1)2 (5.1) 

where a is the radius of the earth. The physical significance of the diffusion coefficient 

K. is not directly intuitive, and its effect may be better understood in terms of the 

time scale r at the smallest spatial scale resolved. The model dissipation should 

remove energy from the end of the spectrum at a rate sufficient to prevent a spurious 

accumulation of energy there, while not affecting the medium and large scales. In the 

GFDL spectral model, the coefficients of the eddy diffusion for \74 were determined 

by trial and error, using the quality of the medium range 500 hPa geopotential height 

forecast as a criterion (Gordon, et al. 1982). They used values of 1 x 1016m4 s-1 and 

2.5 x 1016m4s-1 for T30 leading to values of r of about 53 and 21 hours, respectively 

(based on Equation 5.1). The value used in FSU Global Spectral Model T42 is 

6 x 1015m4 s-1, yielding a r of approximately 23 hours. The effects of a simple second-
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order, constant-coefficient diffusion on model initial state variational retrieval was 

studied by Li and Droegemeier (1993) in the framework of a dry, three-dimensional 

Boussinesq convection model. 

In addition to the horizontal diffusion, filters are also commonly used in numerical 

models to remove high frequency noise that cannot be resolved at the given model 

resolution. In the FSU GSM, a supplementary time filter of the form 

F(t) = F(t) + O! [F(t - 1) - 2F(t) + F(t + 1)] 

is used. The characteristics of this filter are described in detail by Asselin (1972). The 

frequency filter is an excellent damper for computational modes arising in leapfrog, 

centered implicit, and centered semi-implicit time integrations. Also, it discrimi­

nates well between frequencies. Therefore, with an adequately chosen coefficient a, 

this filter damps the spurious computational frequencies and a significant part of 

the spectrum of the external and internal gravity waves. The Rossby motions of 

comparable horizontal dimensions are much less affected due to their low frequency. 

This filter with a = 0.25 removes or filters 2.!lt waves and reduces the amplitude of 

4.!lt waves by one-half, but has little effect on longer-period waves, i.e. it acts as 

low-pass filter in time. However, despite the advantage of immediately suppressing 

the 2.!lt-wave, values of a less than 0.25 are preferable since the stability condition 

requires a progressively smaller Llt as a increases. Moreover, repeated use of even a 

weak filter eventually dampens the lower frequencies (Hal tin er and Williams 1980). 

Robert (1966) used this filter in a general circulation primitive-equation spectral 

model with centered differences to control the instability. The values he used are 
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a = 0.02 and ~t = 20 min. A number of experiments carried out by Krishnamurti 

showed that a = 0.05 is the best value for the Asselin filter for the model forecast. In 

this study, we will carry out an optimal parameter estimation experiment to obtain 

the optimal value of a. The lower bound of a is set to be zero, while its upper bound 

is set to be 0.1. 

The third parameter considered is the ratio, 'Y, of the transfer coefficient of mois­

ture to the transfer coefficient of sensible heat. This parameter arises from the 

parameterization of the surface fluxes in the boundary layer. Accurate heat and 

moisture flux parameterizations are very important since the surface heat flux and 

surface moisture flux exert a strong influence on the surface energy budget and 

precipitation rate. Similarity theory has successfully provided a framework for the 

description of the atmosphere surface layer, namely the lowest 50 m or so of the 

boundary layer in which the Coriolis force can be ignored and the fluxes can be as­

sumed to be constant with height. The flux profiles and other properties of the flow 

are reasonably parameterized via this theory. However, certain empirical parame­

ters or constants evolving from the theory need to be experimentally determined. 

For instance, the van Karman constant and constants associated with the stability 

dependence of the flux-profile formulations must be determined empirically. In this 

study, however, we will not focus on the determination of the constants by fitting to 

the experimental observations. We will instead attempt to obtain an optimal ratio, 

'Y, of the transfer coefficient of moisture to the transfer coefficient of sensible heat 

via a variational parameter identification approach in order to improve the model 

forecast skill. Dyer (1967) found that, over the range 0.02 < lz/ LI < 0.6, both the 
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transfer coefficient of sensible heat, </>H, and the transfer coefficient of moisture, </>Q, 

varied approximately as lz/LI-!; For lz/LI > 0.2, <l>H was found to be proportional 

to lz/ Ll-t, but insufiicien.t data limited the value of the corresponding analysis for 

</>Q· Since reasonable agreement was found between the <PH and ¢Q data, many nu­

merical weather predictioll. models adopt a simple relationship of the type </>Q = </>m 

i.e., 'Y = 1.0. This is also the value used in the original FSU GSM. The specification 

of the 'Y value directly inlpacts upon the moisture flux. 

5.2 The methodology of parameter estimation 

5.2.1 Adjoint formul::\tion 

In this study, we attempt to perform optimal parameter estimation in a vari-

ational approach setting, i.e., to obtain an optimal value of the parameter a such 

that 

J(a0
) < J(a) for all Ck 

where J is a cost function that measures the discrepancy between the observations 

and the corresponding model forecast variables. Hence, the optimal parameter can 

be retrieved by fitting the IDOdel forecast fields to the observations. 

Given bound constraill.ed parameter, i.e., the parameter a satisfies a E [a, b], 

where a and b denote the lower and upper bound respectively, the cost function for 

parameter estimation maY assume the following form: 

11tR J(X, a)= 2 to < W(X - Xob.s), {X - Xob.s) > dt + ..\ g(a) (5.2) 
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where the vector a denotes the vector of model parameters, >. is the penalty coeffi-

cient, X represents the state variable vector, and Xob" the observation vector. The 

second term consists of a penalty function, which is defined as: 

~ (x - b)2 if x ~ b 

g(a) = 0 ifa<x<b (5.3) 

~ (x - a)2 if x $ a 

where g( a) is a function only of the violated constraints. The first derivative of this 

function is: 

x-b ifx~b 

8g 
aa = 0 ifa<x<b (5.4) 

x-a ifx:5a 

Another type of penalty effective in transforming a constrained optimization prob-

lem into an unconstrained one is the barrier method or interior-point method which 

imposes a penalty for reaching the boundary of an inequality constraint. Typically, 

we will use a logarithmic barrier function of the form: 

1 ftR m 
J(X, a)= 2 J1. < W(X - Xob.s), (X - Xob.s) > dt - µ I: log (~(a)) 

~ i=l 

(5.5) 

where µ is the barrier coefficient and h is the constraint function. The barrier meth-

ods are strictly feasible methods, i.e., the iterates lie in the interior of the feasible 

region, and create a "barrier" keeping iterates away from boundaries of the feasible 

region (Nash and Sofer, 1996). Attention needs to be paid to the case where the 

Hessian becomes ill-conditioned as well as to the choice of the parameter µ. 
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There are two different purposes for the inclusion of the second term in Equa-

tions 5.2 or 5.5. The first is to ensure that the retrieved parameter lies within the 

constraint bounds, and a penalty term of the form in Equation 5.2 or a logarithm 

of the box constraints as in Equation 5.5 is efficient for this problem to transform 

the constrained minimization problem into a sequence of unconstrained minimiza-

tion problem. The second purpose is to increase the convexity of the cost function 

by adding a positive value A to the Hessian matrix, thereby increasing its positive-

definiteness. Here, it is worth mentioning that it is not required that the parameter 

which is to be estimated appear explicitly in the cost function, i.e., the parame-

ter may only appear implicitly through its dependence on the model independent 

variables. 

Suppose that the forward model is given in the form 

ax at= F{X, a, t) (5.6) 

Its corresponding tangent linear model is defined as 

{5.7) 

where b denotes the basic state. The adjoint model derived is expressed in the form 

- as - (aF fs = wcx- xob.s) 
at ax {5.8) 

where S represents the adjoint variables. The gradients of the cost function with re-

spect to the initial conditions and that of the parameter a are assuming the following 

form, 

{5.9) 
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(5.10) 

respectively. We notice here that the adjoint model where both parameters and initial 

conditions serve as the control variables assumes the same form as that where only 

the initial conditions serve as control variables. Hence, the problem of parameter 

estimation via the adjoint method when the number of parameters to be estimated 

is small does not result in a significant additional computational burden. We may 

expect that the parameter estimation process will provide us with both optimally 

determined parameters and initial conditions simultaneously. The gradient of the 

cost function with respect to both the initial conditions and the parameter is written 

as: 

(5.11) 

5.2.2 lli-posedness, identifiability and stability issues 

An issue of great practical importance in parameter estimation is the ill-posedness 

problem of parameter estimation (Tichonov et al. 1977). To address this problem, 

let Q be the set of parameters that guarantee that a chosen model equation has a 

solution u(a) and let~ be the observation operator mapping from the solution space 

of the differential equation to the observation space Z. Composing these mappings 

we obtain the parameter-to-output mapping 

4? : Q--+ z, 

with q)(a) = ~ u(a). The parameters are further restricted to a set of admissible 

parameters Q c Q a function space over a domain n in 11!'. Both Q and Q are 
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r+ error 
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Figure 5.1: diagram of parameter estimation 

considered as subsets of a normed linear space Q1 and Z is a normed space as well. 

Let z E Z denote the observation of the process r depending on the parameter a 

which is to be estimated. Due to model and observation error, z may or may not lie 

in the attainable set V. The output least squares formulation for the determination 

of the "best" parameter a• corresponding to the observation z is given by 

Minimize l<P(a) - zl~ over Q . 

It is useful to consider the diagram in Fig. 5.1. 

Here & stands for the actual physical parameter which, when corrupted by various 

errors leads to the observation z. It is useful to divide the output least squares (OLS) 

method into two steps, first finding a projection Zpr of z in V and second determining 

a preimage a• of Zpr in Q such that <P(a*) = Zrn-· Uniqueness of the OLS solution 

thus requires uniqueness of the projection of z onto V as well as injectivity of <I> at 

a• (i.e., ~(a)= <P(a•) = z for some a E Q implies a= a•). Continuous dependence 

of a• on z will hold if both these inverse operations are continuous. 
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The parameter a is identifiable with respect to Q if there exists a neighborhood 

V of the attainable set V = <P(Q) such that for every z E V there exists a unique 

solution O!z E Q depending continuously on z; and it is called stable at the local 

solution O!.z with respect to Q if there exist neighborhoods V(z) of z and U(a.z) of 

a.z and constants K, € > 0, such that for all z E V(z) there exists at least one local 

solution O!z E U(az) and every such local solution O!z satisfies 

The parameter is called stable if it is stable at every local solution. 

Problems that are not identifiable and stable are said to be ill-posed. In case 

of ill-posedness, the numerically obtained parameter will differ according to the ini­

tial guess of the parameter, i.e., it is not· stable under small changes in the initial 

guess, and there will be no reason for the obtained parameter to be close to the 

"true" parameter value. There is no general rule for uniqueness. It depends on the 

type of parameter to be estimated (distributed in space, state dependent), on the 

measurements and on the type of the equation. For constant parameters, there are 

generally more observations than unknowns so that the general situation is unique. 

It is possible, however, that some of the parameters are not very sensitive and adjust 

very slowly to their true values. The problem of identifying spatially-dependent pa­

rameters is, in general, both nonlinear and ill-posed, where a regularization approach 

is recommended (See Tichonov, et al., 1977; Navon 1997). Introducing a reflexive 

Banach space Qc with norm I· le which is compactly embedded into Q1 , and assuming 

Q c Q is close and convex, we define cJc = Q n Qc and assume that cJc is not empty. 
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The regularized functional considered is of the form 

Minimize lq>(a) - zl 2 +.Bia!~ over cJc 

with regularization parameter /3 > 0. Adding a regularization term can require the 

solution to satisfy certain additional properties (smoothness) of the solution. The set 

of regularized solutions is precompact in Q1 . The effect of convexification is reflected 

in that it gives a range of values for the regularization parameter /3 within which a 

continuous dependence of the solutions on the observation z holds. 

5.3 Numerical experiments and results 

5.3.1 Parameter estimation procedure and the results 

In this study, the FSU Global Spectral Model and its full-physics adjoint model 

were employed to optimally identify the three parameters, namely, the bi-harmonic 

horizontal diffusion coefficient, the ratio 'Y of the transfer coefficient of moisture to 

the transfer coefficient of sensible heat, and the Asselin filter coefficient separately. 

A 6h assimilation window was used, from OOOOUTC Sept. 3, 1996 to 0600UTC Sept. 

3, 1996. The initialized ECMWF analysis data at OOOOUTC Sept. 3, 1996 and 

0600UTC Sept. 3, 1996 were taken as the observations during the 6h assimilation 

window period. 

The algorithm implementing the parameter estimation procedure is carried out 

as follows: 

• 1. The 6h forecasts starting from the initialized analysis at 1800UTC Sept. 

2, 1996 was taken as the initial guess of the initial condition. We integrated 
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the full-physics FSU GSM 6 hours, then calculated the cost function using 

Equation 5.2. Since further study needs to be carried out to determine the 

observational error covariance, we simply took the inverse of the maximum 

square of the difference between the two time level observations as the weight 

matrix W in Equation 5.2 (See Navon, et al., 1992c). The initial guess of a, the 

penalty coefficient value and the upper and lower bounds where the parameters 

may vary were specified here. 

• 2. Integrate the full-physics adjoint model of the FSU GSM backward in time 

to obtain the gradient of J with respect to the control variable Y = (X0, a)T, 

and the search direction is given by 

do= -Houo. 

• 3. For k=0,1,2, ... , minimize J(Y k + f3kdk) with respect to {3 2'.:: 0 to obtain 

Yk+i as 

where /A is a positive scalar, the step-size being obtained by a line search so 

as to satisfy sufficient decrease (See Gill, et al., 1981}. 

• 4. Compute 

Y1c+i = V J(Y 1c+1) . 
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• 5. Compute a new search direction 

• 6. Check whether the solution converges. If the convergence criterion 

II 9/c+l II ~ E' max (1, II y /c+l ID 

is satisfied, where tis a small number supplied by the user, then the algorithm 

terminates with Y 1c+i as the optimal solution. Otherwise, go back to Step 3. 

The 6h forecasts from the initialized analysis at 1800UTC Sept. 2, 1996, which 

serve as the initial guesses of the initial conditions, show important underestimates 

of the tropical divergence field, particularly in the Pacific (Fig. 5.2). The errors in 

this field were probably caused by the underestimation of the intensity of tropical 

convection in the course of the forecast. 

The minimization procedure was terminated after 60 iterations, a number of 

iterations that yielded sufficient decrease in the cost function and its gradient for 

each experiment. At the end of the minimization procedure, both the optimal initial 

conditions and optimal value of the parameter were recovered. 

The initial guess of the horizontal diffusion coefficient K was taken to be 6.0 x 

1015m4s-1 as it was used routinely in the T42L12 version of FSU GSM. The penalty 

parameter A was taken to be 1.0 x 10-12, the upper and lower bounds where K. varies 

were taken to be 3.0 x 1016, i.e., five times the value used in the original forecast 

model, and 2.0 x 1015, respectively. The variations of the cost function and the 

gradient norm with respect to the number of iterations are presented in Fig. 5.3. 
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Figure 5.2: The divergence fields at 200 hPa at OOOOUTC Sept. 3, 1996: (a) the 
observation, (b) the initial guess. The contour interval is 5.0 x 10-6 s-1• 
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We see that the cost function decreased to about 15.8% of its original value, while 

the norm of the gradient value decreased to 23.6% of its original value. Fig. 5.4 

displays the evolution of the horizontal diffusion coefficient during the minimization 

procedure. This coefficient experienced a rapid increase until the 35th iteration, 

reaching its peak at the 44th iteration, then experienced a slight decrease. The 

optimal value obtained for the horizontal diffusion coefficient K. is 1.1124 x 1016• This 

value is almost twice the value used in the original forecast model. Since the upper 

bound of the horizontal diffusion coefficient K. is taken as 3.0 x 1016 , i.e., five ti.mes the 

value used in the original forecast model, the optimally identified parameter value 

for K. is reasonable. 

The initial guess (estimated value) of ratio of the transfer coefficient of moisture 

to the transfer coefficient of sensible heat, 'Y, was set to be 1.0 which is the value 

used in the original T42L12 version of FSU GSM. The penalty parameter A was 

set to be 2.0 x 105, while the upper and lower boundaries where 'Y may vary were 

taken to be 5.0 and 0.3, respectively. The initial guess (estimated value) of the 

Asselin filter coefficient FC was set to be 0.05 which is the value used in the original 

forecast model. The upper and lower boundaries for the variation of this parameter 

were taken as 0.1 and 0.0, respectively, and the penalty parameter .;\ was set to 

be LO x 108 • Similar variations of the cost function and the gradient norm with 

respect to the number of iteration were obtained when the ratio 'Y of the transfer 

coefficient of moisture to the transfer coefficient of sensible heat and the Asselin filter 

coefficient FC were retrieved from the observations, respectively. The optimal FC 

value obtained is 0.0487 which is very close to the initial guess, indicating that the 
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initial guess was fairly good. The optimal parameter estimation for "'! the ratio of 

the transfer coefficient of moisture to the transfer coefficient of sensible heat yielded 

a value of 0.4974, which is only half of the initial guess value for this particular 

parameter. 

5.3.2 Forecast experiments using both the retrieved initial conditions 

and parameter values 

Assessing the impact of both the optimal initial conditions and param­

eter estimation. Three experiments were carried out to integrate the model for 

6 hours in order to obtain the analysis fields at the end of the assimilation window 

for the bi-harmonic horizontal diffusion coefficient K, namely: 1) a control experi­

ment that was integrated from the initial guess fields, i.e., 6h forecasts from 18UTC 

Sept. 2, 1996 analysis and the estimated parameter K = 6 x 1015 , 2) the "optimal 

experiment" so called since we were using both the optimal initial conditions and the 

optimal parameter value n,, and 3) a simulation experiment using the estimated pa­

rameter K = 6 x 1015 in which the model was integrated from the initialized OOOOUTC 

Sept. 3, 1996 analysis to serve as the best simulation without using the variational 

data assimilation. The differences between the control experiment and the optimal 

experiment reflect the impact of both the optimal initial conditions and the optimal 

bi-harmonic horizontal diffusion coefficient parameter value. 

The RMS errors of the 6h forecast fields at the end of the assimilation window 

were calculated for the aforementioned experiments and provided in Fig. 5.5. The 

results obtained show that the optimal experiment yields the best results throughout 
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Figure 5.3: The variation of the cost function and the gradient norm with respect to 
the iteration number when both the optimal initial conditions and the bi-harmonic 
horizontal diffusion coefficient K. are retrieved. 
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all of the vertical levels, especially for the divergence field. The RMS errors of the 

logarithm of the surface pressure are 0.140E-2, 0.939E-3, and 0.517E-3 for the control 

experiment, the simulation experiment and the optimal experiment, respectively. 

Fig. 5.6 presents the divergence analysis field at 200 hPa for the aforementioned 

experiments and the observation at the end of the assimilation, i.e., 0600UTC Sept. 

3, 1996. Only the optimal experiment successfully provided a high quality analysis, 

capturing the main features of the divergence field. Both the control experiment and 

the simulation experiment failed to simulate the strong divergence field corresponding 

to a heavy precipitation event over Indonesia and overestimated the divergence field 

to the west of Africa. The control experiment also overestimated the divergence field 

over the northern Africa and underestimated the divergence field around 20\V, 358 

while the simulation experiment overestimated the divergence field to the east of 

Australia. 

The difference fields of the specific humidity at 500 hPa, the vorticity at 200 

hPa, the geopotential height at 500 hPa and the temperature at 850 between the 

results of the aforementioned experiments and the observation field at the end of the 

assimilation are displayed in Figures 5. 7- 5.10. The improvement obtained due to the 

optimal experiment over the results obtained by the other experiments is significant, 

particularly over areas of large errors. 

Fig. 5.11 displays the RMS errors of the meteorological variables for the 24h 

forecast control experiment and optimal experiment for the bi-harmonic horizontal 

diffusion coefficient K. The use of the optimal initial conditions and the parameter 

value improves the 24h forecast fields, however, compared with Fig. 5.5, the differ-
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ences between the control experiment and the optimal experiment decrease as the 

length of the forecast period increases. 

Similar results were also obtained for the other two parameters, the ratio of the 

transfer coefficient of moisture to the transfer coefficient of sensible heat and the 

Asselin filter coefficient. 

Assessing the impact of optimal parameter estimation. In the above 

section, we recovered three pairs of the optimal initial conditions and optimal values 

of three model parameters, and discussed their combined impact on the model fore­

cast. An important question remains to be clarified: how much of the improvement 

obtained is directly attributable to the optimal initial condition, and how much of 

it originates in the optimal values of the identified parameters? In order to provide 

a closer look at this issue, three additional experiments were performed to compare 

with the above-mentioned 6h forecast control experiment (referred to as CI) and 

the optimal experiment (referred to as 02) as well as with the 24h forecast optimal 

experiment (referred to as 04) for K.. The additional experiments are: experiment 

C2 where the initial guesses of the initial conditions and the optimally identified 

parameter value were used, experiment 01 where the optimal initial conditions and 

estimated parameter value were used, and experiment 05 where the optimal initial 

conditions and optimal parameter value were used (Table 5.1). 

To assess the impact of the optimal parameter estimation, we use the differences 

between the RMS errors at all vertical levels for vorticity, divergence, virtual tem­

perature and dewpoint depression fields. If the difference is negative, it means that 
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Figure 5.4: The evolution of the horizontal diffusion coefficient. 

Table 5.1: Experiments designed to assess the impact of optimal parameter estima­
tion. 

Experiment Initial Conditions Parameter Value Integration 

Cl initial guesses estimated value 6h 

C2 initial guesses optimal value 6h 

01 optimal initial conditions estimated value 6h 

02 optimal initial conditions optimal value 6h 

04 optimal initial conditions estimated value 24 h 

05 optimal initial conditions optimal value 24 h 
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Figure 5.6: The divergence fields at 200 hPa at the end of the assimilation window: 
(a) the observation, (b) the control experiment, (c) the simulation experiment and 
( d) the optimal experiment, respectively. The contour interval is 8.0 x 10-6 s-1• 
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Figure 5.7: The difference fields of specific humidity at 500 hPa between the results 
of the following three experiments and the observation at the end of the assimila­
tion window: (a) the control experiment, (b) the simulation experiment and (c) the 
optimal experiment. The contour interval is 0.0005 g/ g. 
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Figure 5.8: The difference fields of vorticity at 200 hPa between the results of the 
following three experiments and the observation at the end of the assimilation win­
dow: (a) the control experiment, (b) the simulation experiment and (c) the optimal 
experiment. The contour interval is 10-ss-1 • 
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Figure 5.9: The difference fields of potential height at 500 hPa between the results 
of the following three experiments and the observation at the end of the assimila­
tion window: (a) the control experiment, {b) the simulation experiment and (c) the 
optimal experiment. The contour interval is 5 m2 / s2 • 
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Figure 5.10: The difference fields of temperature at 850 hPa between the results 
of the following three experiments and the observation at the end of the assimila­
tion window: (a) the control experiment, (b) the simulation experiment and (c) the 
optimal experiment. The contour interval is lK. 
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dewpoint depression at the end of the 24h forecast. solid line: the control experiment; 
dotted line: the optimal experiment. 
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the RMS error of the experiment where the optimally identified parameter value was 

used is smaller than the RMS error of the experiment where the estimated parame­

ter value was used; otherwise, the RMS error of the experiment where the optimally 

identified parameter value was used is larger than the RMS error of the experiment 

where the estimated parameter value was used. The difference between the exper­

iments Cl and C2 reflects the impact of optimal parameter values on the forecast 

when the optimal initial conditions were not used, while the differences between the 

experiments 01 and 02, and between the experiments 04 and 05 reflect the impact 

of the optimal parameter values on the forecast when the optimal initial conditions 

were applied to the 6-h forecast and 24-h forecast, respectively. The differences of 

the Ri\iIS errors of the vorticity, divergence, virtual temperature and the dewpoint 

depression fields at the end of the forecast between experiment pairs C2 and Cl, 02 

and 01, 05 and 04 are displayed in Fig. 5.12. For the pair C2 and Cl, the RMS 

difference values for all of the aforementioned variables are negative except only for 

the dewpoint depression at the lowest two levels. This indicates a relatively small 

(compared to the difference of the RMS errors between Cl and 02) but positive 

impact of the optimal parameter value on the model simulation. The experiment 

01 is comparable to 02 in terms of RMS error. The impact of the optimal initial 

conditions dominates that of the optimal parameter value at the end of the assim­

ilation window. This is very reasonable since in the first few hours of the forecast, 

the optimal initial conditions may reconstruct the dynamic structure while the OI>­

timal bi-harmonic horizontal diffusion coefficient value can only adjust it. However, 

the lower level divergence fields were largely improved in all of the pairs of experi-
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ments conducted when the optimal parameter value K. was used. As the length of the 

forecast period increased, the impact of the optimal parameter value on the model 

forecast became more pronounced for the pair 04 and 05. Compared with Fig.5.11, 

this result implies the known fact that the effect of the optimal initial conditions 

decays as the forecast period becomes longer. 

An additional experiment was conducted with the fixed initial conditions at 

OOOOUTC Sept. 3, 1996 and where only the parameter K. was considered as the S()le 

control variable. An identical cost function and initial parameter value to those used 

before were employed. The cost function value reached a constant value while the 

norm of the gradient decreased by three orders of magnitude in five iterations. The 

optimal bi-harmonic horizontal diffusion coefficient value obtained is 1.1946 x 1016• 

This value is very close to that obtained when we recovered both the optimal initial 

conditions and the optimal parameter value. A similar positive impact was observed 

when comparing the forecasts using the estimated parameter value and the optimal 

parameter value, respectively. 

Similar experiments (related to the experiments detailed in Table 5.1) were also 

conducted separately for the parameters FG and 'Y· Since the optimal value of the 

Asselin filter coefficient FG is very close to its estimated value, the impact of this 

parameter on the ensuing forecasts is marginal. A positive impact of the optimal 

ratio 'Y on the forecasts was also observed while the impact of the optimal initial 

conditions was found to be dominant during the first several hours of the forecast. 
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temperature and the dewpoint depression between the three pairs at the end of the 
forecam. solid line: C2 and Cl; dashed line: 02 and 01; dot dashed line: 05 and 
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5.3.3 Impact of the optimal parameters alone on ensuing 24h forecasts 

A number of 24h forecast experiments beginning from OOOOUTC Sept. 3, 1996 

analysis were performed where only the optimal parameter values obtained above 

were used in order to examine the impact of each parameter separately as well as 

the combined impact of all the three parameters on the ensuing forecast fields. The 

experiments are designed as: (a) an experiment with the estimated parameters, i.e., 

K = 6.0 x 1015 , FC = 0.05 and 'Y = 1.0; (b) an experiment with the estimated FC 

and 'Y but the optimally retrieved /'i, value; ( c) an experiment with the estimated FC 

and K but the optimally retrieved 'Yi (d) an experiment using optimally retrieved 

K, FC and 'Y simultaneously. Since the optimal value of FC is very close to its 

estimated value, the impact of this parameter is marginal. 

The R.l\iIS errors of the vorticity, divergence, dewpoint depression and the virtual 

temperature fields at all vertical levels are calculated between the above experiments 

and the analysis at OOOOUTC Sept. 4, 1996. Fig. 5.13 displays the differences of the 

R...l\1S errors between the experiments (b) and (a), (c) and (a), (d) and (a). Negative 

values of the RMS differences indicate that the fu\:1S errors are less than those of 

the experiment (a) with the estimated parameter values, i.e., the optimal parameter 

value impacts positively on the forecast. 

The results show that the optimal horizontal diffusion coefficient /'i, mainly impacts 

on the vorticity and divergence fields. The use of the optimal diffusion coefficient K 

also has a positive impact on the upper and middle levels of the virtual temperature 

and the dewpoint depression fields, but a negative impact on the lower levels of these 

fields. On the other hand, in experiment ( c) when only the optimal value of the ratio 
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Figure 5.13: The differences of the RMS errors of the 24h forecast vorticity, diver­
gence, virtual temperature and the dewpoint depression between the following pairs. 
dashed line: experiments (b) and (a); dot dot dashed line: experiments ( c) and (a); 
solid line: experiments ( d) and (a). 
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"Y is employed, the vorticity and divergence fields are only slightly improved, but 

the middle and lower levels of the virtual temperature and the lower levels of the 

dewpoint depression experienced a large improvement. The effect of "Y is mainly 

confined to the lower vertical levels of the model. As might be expected, the best 

forecasts were obtained by experiment (d) where all of the optimal parameter values 

of"" and FC as well as "Y were used simultaneously. In this sense, experiment (d) 

combined all of the advantages of experiments (b) and (c). 

5.3.4 A study of the model's "memory" of impacts of optimal initial 

conditions and identified parameter values 

So far we have studied either the combined impact of both the optimal initial 

conditions and the optimal parameter values or the impact of only the optimally 

identified parameter values on the ensuing forecast. In this section, we will discuss the 

persistence (memory) of the combined impact of the above-mentioned three optimally 

identified parameter values as well as the persistence (memory) of the impact of the 

optimal initial conditions obtained by variational data assimilation on the ensuing 

forecast, respectively. 

Three sets of experiments were carried out by integrating the model for 24h, 48h 

and 72h respectively from OOOOUTC Sept. 3, 1996. The first set of experiments Cl, 

C2 and C3 are control experiments which were integrated from the initial guesses of 

the initial conditions (i.e., the 6h forecast from 1800UTC Sept. 2, 1996) using the 

estimated parameter values. The second set of "optimal parameter" experiments Pl, 

P2 and P3 started from the initial guesses of the initial conditions using the optimally 
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Table 5.2: Experiments carried out by integrating the model for 24h, 48h and 72h 
from OOOOUTC Sept. 3, 1996, respectively. 

Exp. Initial conditions Parameter values Length of forecast 

Cl initial guesses estimated values 24 h 

C2 initial guesses estimated values 48 h 

C3 initial guesses estimated values 72 h 

Pl initial guesses optimal values 24 h 

P2 initial guesses optimal values 48 h 

P3 initial guesses optimal values 72 h 

I1 optimal initial conditions estimated values 24 h 

I2 optimal initial conditions estimated values 48 h 

13 optimal initial conditions estimated values 72 h 
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identified values of the above-mentioned three parameters. The third set of "optimal 

initial condition" experiments 11, 12 and 13 were integrated from the variationally 

derived optimal initial conditions using estimated parameter values (Table 5.2). 

The RMS errors of vorticity, divergence, virtual temperature and dewpoint de­

pression fields were calculated for each experiment. Then, the percentages of the 

differences of the RL\1S errors between Cl and Pl, C2 and P2, C3 and P3, Cl and 

11, C2 and 12 and C3 and 13 were computed. The differences of RMS errors and 

the percentages of the decrease of RJv1S errors due to the use of the three optimally 

identified parameter values are displayed in Figures 5.14 - 5.15. The results show 

that all the experiments using optimally identified parameter values exhibit smaller 

RMS errors than those using estimated parameter values through out all of the ver­

tical levels except for the virtual temperature at the top vertical level of the model. 

This means that the combined impact of the three identified parameter values still 

persists for the 72h forecast, and probably even further beyond. The largest im­

provement in the 24h forecast occurred at the low vertical levels of the dewpoint 

depression field where the RLV1S error decreased by up to 17%. The overall forecast 

RMS errors further decreased during the 48h forecast. The impacts of the optimally 

identified parameter values on the vorticity field and on the middle vertical levels of 

the divergence, virtual temperature fields as well as the lower levels of the dewpoint 

depression field decayed for the 72h forecast compared to the results obtained with 

optimally estimated parameters for the corresponding 48h forecast. The RMS errors, 

however, still decreased by up to 10% compared to the experiment where estimated 

parameters were used for the same 72h forecast. 
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Figure 5.14: The differences of the RMS errors of the ensuing forecast fields vortic­
ity, divergence, virtual temperature and the dewpoint depression between when the 
optimally identified parameter values were used and when the estimated parameter 
values were used. solid line: 24h forecast; long, short dashed line: 48h forecast; dot 
dot dashed line: 72h forecast. 
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Figure 5.15: The percent differences of the RMS errors of the ensuing forecast fields 
vorticity, divergence, virtual temperature and the dewpoint depression between when 
the optimally identified parameter values were used and when the estimated param­
eter values were used. solid line: 24h forecast; long, short dashed line: 48h forecast; 
dot dot dashed line: 72h forecast. 
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Figure 5.16: The differences of the RMS errors of the ensuing forecast fields vortic­
ity, divergence, virtual temperature and the dewpoint depression between when the 
optimal initial conditions were used and when the initial guesses of initial conditions 
were used. solid line: 24h forecast; long, short dashed line: 48h forecast; dot dot 
dashed line: 72h forecast. 
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The differences of RMS errors and the percentages of the decrease in RMS errors 

for vorticity, divergence, virtual temperature and dewpoint depression fields by using 

variationally derived optimal initial conditions are presented in Figures 5.16 and 

5.17, respectively. A very clear trend is observed, namely, the impact of the optimal 

initial conditions decays as the forecast time increases, especially the impact on 

the divergence field which decays very rapidly. The improvement of the forecast in 

terms of RMS errors due to the combined impact of the three optimally identified 

parameter values exceeds that obtained due to the impact of the optimal initial 

conditions in the ensuing 72h forecast. Even for the 24h forecast, the impact of 

the three optimally identified parameter values on the lower vertical level of the 

dewpoint depression exceeds that of the optimal initial condition. This means that 

the model tends to ''forget" first the impact of the optimal initial conditions in 

the ensuing forecast, while the impact of using optimally estimated parameters on 

above-mentioned forecast fields persists even after 72 hours. 

\.Ve would like to point out that the mechanisms of the impacts resulting from 

variationally derived optimal initial conditions and from the optimally identified pa­

rameter values are quite different. The impact of the optimally identified parameter 

values is effective throughout the entire integration period via the corresponding 

physical parameterization or numerical schemes, while the impact of the optimal 

initial conditions obtained via variational data assimilation is to reduce the errors 

in the initial conditions that might lead to poor forecast, and to provide a more 

accurate specification of the initial conditions. This explains why their impacts are 

quite different. Fig. 5.18 displays the difference fields between experiments Cl, Pl 
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Figure 5.18: The difference fields between experiments (to be enumerated below) 
and the analysis for the specific humidity at 850 hPa as follows: (a) the control 
experiment Cl, (b) experiment Pl. The contour interval is 0.003 g/g. 
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Figure 5.19: The difference field of specific humidity at 850 hPa between experiments 
Cl where the estimated parameter values were used and Pl where the optimally 
identified parameter values were used. The contour interval is 0.0008 g / g. 
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Figure 5.20: The difference fields between experiments (to be enumerated below) 
and the analysis for the specific humidity at 500 hPa as follows: (a) the control 
experiment Cl, (b) experiment 11. The contour interval is 0.0008 g/g. 
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and the analysis for specific humidity at 850 hPa, respectively, while the difference 

field of specific humidity at 850 hPa between experiments Cl and Pl is displayed in 

Fig. 5.19. Comparing Fig. 5.18 (a) and (b), we notice that the positive differences 

between the forecast and the analysis became smaller while the negative differences 

between the forecast and the analysis became larger over most of the forecast area 

in experiment Pl when optimally identified parameter values were used. That is to 

say, the use of the optimally identified parameter values tended to produce a smaller 

specific humidity forecast over most of the global domain since the optimal ratio of 

the transfer coefficient of the moisture to the transfer coefficient of the sensible heat 

is only about half of its estimated value. Larger specific humidity forecasts in exper­

iment Pl than those in experiment Cl were observed only in a few regions, such as 

central South America, which might have been caused by the impact of the optimal 

bi-harmonic horizontal diffusion coefficient or by interactions between the impacts of 

the three optimally estimated parameter values. In this case, the improvement due 

to the use of the optimally identified parameter values was observed mainly over the 

overestimated areas with respect to the analysis (in experiment Cl) which spread 

over the land. Fig. 5.20 displays the difference fields of the specific humidity at 500 

hPa between experiments Cl, I1 and the analysis, respectively. Experiment 11 where 

the optimal initial conditions were used, however, does not exhibit such features as 

mentioned above, rather the improvement was obtained both in underestimated and 

overestimated areas compared with the result of experiment Cl, especially in areas 

of large errors. 
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It is also known that forecasts starting from the variationally derived optimal 

initial conditions are not as good as the forecasts starting from the latest avail­

able analysis {Pu, et al., 1997). However, we compared the forecasts starting from 

0600UTC Sept. 3, 1996 analysis {the latest available analysis in this study) us­

ing both the estimated values of the three parameters and the previously optimally 

identified parameter values, respectively. Similar improvements to those shown in 

Fig. 5.14 were observed. The optimally identified values of the bi-harmonic hori­

zontal diffusion coefficient and the ratio of the transfer coefficient of the moisture 

to the transfer coefficient of the sensible heat actually improved the performance 

of the corresponding physical parameterization and/ or numerical schemes, so that 

their impacts on the model forecast persisted under a similar large-scale atmospheric 

environment. 

Finally, we present anomaly correlation results in Figures 5.21 - 5.22 for the 

specific humidity forecasts at 850 hPa and the geopotential height forecasts at 500 

hPa for the control experiments, "optimal parameter" experiments, and "optimal 

initial condition" experiments as well as the experiments using both optimal initial 

conditions and optimally identified parameter values, respectively. These anomaly 

correlations were measured both for the tropical belt (defined here to be 408 - 40N 

where physical initialization was usually carried out (Krishnamurti, 1991)) and for 

the Northern Hemisphere (Fig. 5.21). The specific humidity field, which is mainly 

distributed in the lower troposphere, is very important in the tropical system. Com­

paring Fig. 5.21 (a) and {b), we see that the anomaly correlation for the Northern 

Hemisphere is consistently higher than that for the tropical belt for the entire 5-day 
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Figure 5.21: Anomaly correlation of the specific humidity forecasts at 850 hPa for the 
control experiments (solid line), "optimal parameter" experiments (dot dot dashed 
line), "optimal initial condition" experiments (dotted line), and the experiments 
using both the optimal initial conditions and optimally identified parameter values 
(dashed line). Upper panel: tropical belt; Lower panel: Northern Hemisphere. 
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Figure 5.22: Anomaly correlation of the geopotential height forecasts at 500 hPa 
for the control experiments (solid line), "optimal parameter" experiments (dot dot 
dashed line), "optimal initial condition." experiments (dotted line), and the experi­
ments using both the optimal initial conditions and optimally identified parameter 
values (dashed line). Upper panel: tropical belt; Lower panel: Northern Hemisphere. 
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integration period. The "optimal initial condition" technique appears to be more 

skillful than the "optimal parameter" method for the first 24h forecast in the trop­

ical belt and for the first 48h forecasts in Northern Hemisphere. However, later in 

the forecast, for the period 48 - 120 h, the "optimal parameter" method yields better 

skill results than the "optimal initial condition" technique. The experiments using 

both the optimal initial conditions and optimally identified parameter values have 

the highest anomaly correlations, where for the 120h forecast, the anomaly corre­

lation increases from 0.651 in the control experiment to 0. 707 for the tropical belt 

and from 0. 725 in the control experiment to 0. 778 for the Northern Hemisphere. It 

is well-known that the anomaly correlation of the geopotential height forecasts at 

500 hPa is a major index for the mid-latitude forecast. It is shown that the "op­

timal initial condition" technique is more skillful throughout the 5-day forecasts in 

the N orthem Hemisphere in terms of the anomaly correlation of the geopotential 

height forecasts at 500 hPa. However, the "optimal parameter" experiments exhibit 

only a small improvement which becomes manifest for the 4-day and 5-day forecasts. 

The reasons for this might be that the three parameters were not very sensitive to 

the surface pressure and also due to the fact that the horizontal diffusion was not 

applied to the surface pressure. Nevertheless, the experiments using the optimal 

initial conditions and optimally identified parameter values simultaneously achieved 

satisfactory results over all of the N orthem hemisphere and the tropical belt. 
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CHAPTER6 

AN APPLICATION OF SENSITIVITY OF THE MODEL FORECAST 

ERROR TO THE INITIAL CONDITIONS 

The adjoint method is an efficient approach to carry out sensitivity analysis. This 

method allows us to calculate the gradients of any response (forecast aspect) with 

respect to all of the model input variables and parameters with only one integration 

of the forward nonlinear model and one backward integration of its adjoint model. 

The use of adjoint in sensitivity studies was initiated by the early work of Cacuci 

(1981a, b ), who introduced a general sensitivity theory for nonlinear systems. Hall 

et al. (1982) applied the theory successfully to sensitivity of a climate radiative­

convective model to some parameters. An in-depth review of the entire range of 

applications of sensitivity theory has been presented by Cacuci (1988). Later, Errico 

and Vukicevic (1992) indicated that the adjoint fields quantify the previous condi­

tions that most affect a specified forecast aspect. Rabier et al. (1992) used the 

adjoint of a global primitive equation model to investigate the following question: 

to which aspects of the initial conditions is cyclogenesis most sensitive in a simple 

idealized situation? Zou et al. (1993c) examined the sensitivity of a blocking index 

in a two-layer isentropic model using a response functional depending on both space 

and time. 

One of the applications of adjoint sensitivity is to trace back the geographical 

regions where large forecast errors originate. Since the numerical weather prediction 
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model forecasts are generally sensitive to small errors in the initial conditions, the 

errors in analyses might amplify rapidly in model forecasts, leading to large forecast 

errors. Some studies have been carried out recently applying adjoint sensitivity 

to targeted or adaptive observations. For instance, Morss et al. (1998) examined 

adaptive observation strategies using a multilevel quasi-geostrophic channel model 

and a realistic data assimilation scheme. Pu et al. (1998) applied the quasi-inverse 

linear and adjoint methods to targeted observations during FASTEX. Both of their 

results indicated that the adjoint method was useful in determining the locations for 

adaptive observations. 

In this study, sensitivity experiments using the adjoint method were carried out 

for a case on June 8, 1988 during the Indian summer monsoon. We will explore 

the sensitivity of the 1-day forecast error over a localized region of interest with 

respect to the initial conditions, which will be taken as a diagnostic tool to identify 

possible regions of analysis problems leading to large forecast errors, and expect that 

sensitivity analysis will provide us with an indication for the placement of adaptive 

observations in the locations where they are most needed, i.e., adding observations 

in the areas of large uncertainty (Lorenz and Emanuel, 1997). 

6.1 Experimental setup 

The model used in this study is a T42Ll2 version of the FSU GSM developed by 

Krishnamurti's lab, i.e., the horizontal resolution is of a triangular truncation type 

with total wavenumber of 42 and 12 levels in the vertical. The physical processes 

for both the forecast model and the adjoint model include planetary boundary layer 
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processes, vertical diffusion, dry adjustment, large-scale condensation and evapora-

tion, deep cumulus condensation, horizontal diffusion and radiation processes. The 

adjoint integration was performed in the vicinity of a basic trajectory derived from 

the forward nonlinear FSU GSM starting from an ECMWF analysis valid 24 hours 

before the verification time. The gradients of the 1-day forecast error with respect 

to the initial conditions are called sensitivity patterns. 

Let us denote by X the state vector of the model at time t and J(X(t1)) the 

forecast aspect. Suppose the time evolution of the atmosphere is governed by the 

equation 

dX dt =F(X), (6.1) 

whose corresponding discretized tangent linear model is as follows 

5X(ti) = P(ti, to) 8X(to) , (6.2) 

where t0 and t 1 denote the initial time and verification time, respectively. The adjoint 

of the tangent linear model is 

(6.3) 

As shown in Rabier (1992) the gradient of J with respect to X(t0 ) is equal to 

(6.4) 

where the operator pT is the adjoint of the tangent linear operator P. Since the 

adjoint sensitivity in this study consists of the gradient of J with respect to the 

initial conditions, it can be computed by integrating the adjoint model backward in 
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time. A small perturbation or analysis error OX(to) in the initial conditions X(t0 ) 

will result in a change in the forecast error J given by 5J =< 'Vx(to)J, 5X(t0) >. 

Hence, in the geographical areas with a large (small) gradient value, a change in the 

initial conditions has a large (small) impact upon the forecast error. 

We studied the sensitivity of 1-day forecast error integrated from 12UTC June 

7, 1988 over a limited area, namely the Indian Monsoon area, with respect to the 

initial conditions. The forecast aspect is defined as the square norm of the differences 

between the model 1-day forecasts and the verifying analysis. The limited ·area or 

region of interest is defined to be the area between 60E and lOOE, equator and 30N. 

On June 8, 1988, the Indian summer monsoon entered its active stage. A cross­

equatorial flow set in, both the Arabian Sea and the Bay of Bengal branches were 

established, with depressions over the east central Arabian Sea and over the northern 

Bay of Bengal. Figures 6.1 and 6.2 display the geopotential height fields at 500 hPa 

at 12UTC June 7 and June 8, 1988 and the model 1-day forecast, respectively. The 

difference field of the geopotential height field at 500 hPa between the model 1-day 

forecast and the verifying analysis is displayed in Fig. 6.3. The differences are found 

to be rather large over the northern Bay of Bengal around 17.5N. 

6.2 Results of the numerical experiment 

The objective of this study is to find out the geographical areas to which the 

forecast aspect is the most sensitive. The gradient of J, i.e., the sensitivity pattern, 

is evaluated with respect to the model state variables. 
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Figure 6.1: The geopotential height field at 500 hPa for 12UTC June 7 (upper panel) 
and June 8 (bottom panel), 1988. 
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Figure 6.2: The geopotential height field at 500 hPa of the model 1-day forecast. 
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Figure 6.3: The difference field of the geopotential height field at 500 hPa between 
the model 1-day forecast and the verifying analysis. 
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Figure 6.4: The squared sum of sensitivities with respect to the initial analysis of 
dewpoint depression for each model vertical level. 
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Figure 6.5: The sensitivities with respect to the dewpoint depression at the lowest 
model level. The contour interval is 1 K-1• 

115 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

46N-r-~~~-..,--~__,~....,...,....~~~~~~~~~~~--,......,..~~~~~--, 

40N ... 
35N 
30N · · · 
26N 
20N 
15N ~ · 
10N 

6N 
EQ 
55 

105 

155 

····a···· 
. ··\· ... · ..... . 

: : : : : :~: :.·:: .. : ... · ...... ::.:.:::: 
2050 20E 40E 60E BOE 

..... 
- - .. -..... 

0 

100E 120E 140E 160E 180 

Figure 6.6: The sensitivities with respect to the initial analysis of dewpoint depression 
at the second lowest model level. The contour interval is 1 K-1• 

46N,....~~----,..-.~__,~....,.~----------~------~----,......,..eo---~~~--, 

40N 
35N 
JON 
26N 
20N 
15N . . ~. 

10N 

6N 
EQ ... 

55 
105 .. 

155 

2050 20E 

·-·~········'· . . 
- . . . . . . . . . 
. .. o·~ . 

. .·· .. ·:::.:>~: 

. ~- .. 
0 

40E 60E BOE 100E 120E 1.coE 160E 180 

Figure 6.7: The sensitivities with respect to the initial analysis of dewpoint depression 
at the third lowest model level. The contour interval is 1 K-1• 
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It is known that the analysis of moisture field is usually unreliable over the tropics 

due to the lack of the observations, i.e., there is a large uncertainty in this analysis. 

Fig. 6.4 presents the squared sum of sensitivities with respect to the initial analysis 

of dewpoint depression for each model vertical level. The striking feature observed is 

that the forecast error is very sensitive to the initial analyses of dewpoint depression 

at the lowest three model vertical levels, while the sensitivities to the upper model 

levels are small. In order to provide a closer look at a single model vertical level, 

the sensitivity patterns with respect to the dewpoint depression at the lowest three 

model levels, i.e., model vertical levels 12, 11 and 10, are presented in Fig. 6.5 -

Fig. 6. 7, respectively. A large positive maximum center located at the upstream of 

the region with large forecast errors over the northern Bay of Bengal was observed for 

both of the two lowest model levels, but a large negative maximum center was more 

pronounced at the third lowest vertical level. The analyses of dewpoint depression at 

time t 0 were diagnosed to be too dry over the northern Bay of Bengal at the lowest 

two model vertical levels. The results obtained show that the model 1-day forecast 

error is most sensitive to the analysis errors in the dewpoint depression around 90E, 

20N. Additional observations around this point are expected to improve the model 

1-day forecast. The vertical cross-section at 20N for the sensitivity with respect to 

the dewpoint depression at ti.me t 0 is displayed in Fig. 6.8. The pattern is tilted 

in the vertical to the west, which indicates that further growth of the depression is 

sensitive to baroclinic perturbations at the initial time. 

The sensitivity patterns with respect to the initial analysis of virtual temperature 

at model vertical levels 12 and 10 (Figures. 6.9 and 6.10) also indicate the locations 
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Figure 6.8: The vertical cross-section at 20N for the sensitivity with respect to the 
dewpoint depression at time t 0• The contour interval is 2K-1. 
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Figure 6.9: The sensitivity pattern with respect to the initial analysis of virtual 
temperature at model vertical level 12. The contour interval is 1 K-1• 
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of the geographical regions where the analysis problems lie in. The analyses of virtual 

temperature over the northern Bay of Bengal were diagnosed to be too low at model 

vertical level 12 and too high at model vertical level 10. The vertical cross-section 

at 20N is displayed in Fig. 6.11. 

The calculation of the squared sum of sensitivities with respect to the initial anal­

ysis of vorticity for each model vertical level indicates that the model 1-day forecast 

error is sensitive to the uncertainties in the analysis at model vertical levels 11 and 

7, which are approximately located near the surface and 700 hPa, respectively. For 

the initial analysis of divergence, the model 1-day forecast error is most sensitive to 

the errors at model vertical level 11. The sensitivity patterns with respect to the 

initial analyses of vorticity and divergence at model vertical level 11 are displayed 

in Fig. 6.12 and Fig. 6.13, respectively. Two important areas with opposite signs 

are observed for both the sensitivity patterns. The vertical cross-section at 20N for 

the sensitivity pattern with respect to vorticity at time t0 (Fig. 6.15) exhibited two 

large centers with opposite signs, both of which were located in the lower troposphere 

around 90E, 20N. This indicated that the forecast error was very sensitive to the vor­

ticity analysis uncertainties in the lower atmosphere. One maximum center, which is 

located at model vertical level 7, was also observed in the vertical cross-section at lON 

for the sensitivity pattern with respect to the initial analysis of vorticity (Fig. 6.16), 

however, no westward-tilting of the vertical structure was observed. The results show 

that analysis uncertainties at model vertical level 7 are mainly distributed over the 

eastern Arabian Sea, while the analysis uncertainties at model vertical level 11 are 

mainly located around 90E, 20N. 
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The sensitivity signal is represented by the sum of the square of the sensitivity 

patterns throughout the whole range of vertical levels. The sensitivity signals for 

vorticity and dewpoint depression are displayed in Figures 6.17 and 6.18, respec­

tively. It is apparent that the model 1-day forecast error is most sensitive to the 

analysis errors located around 90E, 20N over the northern Bay of Bengal. 
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Figure 6.10: The sensitivity pattern with respect to the initial analysis of virtual 
temperature at model vertical level 10. The contour interval is 2 K-1. 
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Figure 6.11: The vertical cross-section at 20N for the sensitivity pattern with respect 
to virtual temperature at time t 0• The contour interval is 2 K-1 • 

122 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

46N 
40N 
35N ... 

30N 
26N 
20N 
15N ~ 
10N ... 

6N .... 

EQ 
55 

105 ~ ..... 

155 
0 

2050 20E 180 

Figure 6.12: The sensitivity pattern with respect to the initial analysis of vorticity 
at model vertical level 11. The contour interval is 200000s. 
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Figure 6.13: The sensitivity pattern with respect to the initial analysis of divergence 
at model vertical level 11. The contour interval is 200000s. 
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Figure 6.14: The sensitivity pattern with respect to the initial analysis of vorticity 
at model vertical level 7. The contour interval is 200000s. 
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Figure 6.15: The vertical cross-section at 20N for the sensitivity pattern with respect 
to vorticity at time t0• The contour interval is 200000s. 
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Figure 6.16: The vertical cross-section at ION for the sensitivity pattern with respect 
to vorticity at time to. The contour interval is 200000s. 

125 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

46N..,.....-=TT"~--.,.--~--.:--.....,...,.....~~~~~~~~~~~_,.......,.~~~~~----. 

40N .. 

35N 
30N 

26N 
20N 
15N ~ ·: 
10N 
6N 

EQ 

5S 
105 
15S 

2050 20E 40E 60E SOE 100E 120E 140E 

Figure 6.17: The sensitivity signal for vorticity at ti.me t0 • 
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Figure 6.18: The sensitivity signal for dewpoint depression at time t0 • 
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CHAPTER7 

SUMMARY AND FUTURE RESEARCH 

In this study, we developed the tangent linear and adjoint codes for the radiation 

and the boundary layer process packages, removing the existing discontinuities in 

the physical processes which most affect the linear approximation and the behav­

ior of the minirnization convergence rate. This resulted in the completion of the 

full-physics adjoint model for the FSU GSM. With the availability of the FSU GSM 

and its full-physics adjoint model, we carried out a twin experiment to demonstrate 

the feasibility of 4-D VAR using the full-physics adjoint model, and closely exam­

ined the quality of the retrieved initial conditions. The results obtained were very 

encouraging. This effort was followed by numerical experiments of variational data 

assimilation and adjoint parameter estimation which were performed using the ini­

tialized ECMWF analysis data. Both optimal initial conditions and optimal values 

of three key parameters, i.e., the bi-harmonic horizontal diffusion coefficient, the 

Asselin filter coefficient and the ratio of the transfer coefficient of moisture to the 

transfer coefficient of sensible heat, were recovered using the full-physics adjoint of 

the FSU Global Spectral Model. The optimally identified value of the bi-harmonic 

horizontal diffusion coefficient was found to be almost twice the value used in the 

original forecast model, while the optimally identified value of Asselin filter coeffi­

cient was found to be very close to its original estimated value which indicated that 
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its estimation was fairly good. The optimal value for the parameter 'Y was found to 

be only half of the value used in the original forecast model. 

We focused our investigation on the 6h forecast fields at the end of the assimilation 

window starting from the retrieved optimal initial conditions and the optimal param­

eter values, which are the fields at the latest analysis time. The results showed that 

these fields successfully captured the main features of the analysis fields. Although 

the impact of optimal initial conditions dominated that of the optimal parameter 

values at the early stages of the forecast, a positive impact due to each optimally es­

timated parameter value was observed. The ensuing 24h forecast experiments where 

only the optimal parameter values were used further showed the positive impact 

of using optimal parameter values. The optimally identified bi-harmonic horizontal 

diffusion coefficient improved vorticity and divergence fields as well as the fields of 

virtual temperature and dewpoint depression at the upper vertical levels. The ratio 

'Y of the transfer coefficient of moisture to the transfer coefficient of sensible heat 

had a large positive impact on the lower vertical levels of the model, especially for 

the virtual temperature and the dewpoint depression fields. By combining the three 

optimally identified parameter values, we obtained the best forecast results. Fur­

ther studies of ensuing forecasts using the optimally identified parameter values and 

the optimal initial condition respectively showed that the model tended to "forget" 

first the impact of the optimal initial condition while the impact of optimally iden­

tified parameter values persisted well beyond the range of 72 hours forecast. The 

optimally identified values of the bi-harmonic horizontal diffusion coefficient and the 

ratio of the transfer coefficient of the moisture to the transfer coefficient of the sen-
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sible heat improved the performance of the corresponding physical parameterization 

scheme, therefore, the regions of the impacts resulting from variationally derived 

optimal initial conditions and from the optimally identified parameter values were 

quite different. The anomaly correlation results indicated that the experiments using 

simultaneously optimal initial conditions and optimally identified parameter values 

yielded the best performance. 

However, we should be aware that these results were obtained for a single case 

study. Further studies should be conducted for different initial conditions in order 

to draw a more general conclusion. Moreover, the parameters studied in this paper 

were assumed to be constant in both time and space. In future research, we should 

address the issue of retrieving values of tt and 'Y that vary both in space and time. In 

particular, we would like to focus on the values of 'Y for different stages of a tropical 

system and for different regions, and study their impact on the forecasts, especially 

on the precipitation field. Additionally, for a parameter estimation to be properly 

specified, the parameter's seasonal variation should also be taken into account. 

The three optimal parameter values were determined on the basis of one day 

on which these computations were carried out. When the number of parameters to 

be estimated is small, the parameter estimation process can provide us with both 

optimally determined parameters and initial conditions simultaneously for every case 

without involving significant additional computational burden. However, in as far as 

the operational forecast is concerned, it is not necessary and efficient to optimally 

identify parameter values in a daily manner. The parameter estimation procedure 

should be carried out over a period of many days {such as 30 days) so that a reliable 
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expected value for each parameter can be obtained. The issue of the period of validity 

of optimally estimated parameters and the frequency with which they should be 

refreshed in an operational model would necessitate further studies. Yet another 

question that deserves further study is the issue of the feedback between the effects 

of various optimally estimated parameters. 

In this study, the nonlinear forecast model was assumed to be perfect, i.e., it 

was used as a strong constraint. Further studies should be conducted to take into 

account the model forecast error, i.e., the forecast model can be regarded as a weak 

constraint, and its effect on the retrieved initial conditions and optimal parameter 

values should be examined. 

At the end of the study, a preliminary experiment was carried out for the the 

sensitivity of the model 1-day forecast error to the initial conditions for an Indian 

summer monsoon case. The results were applied to localize the regions with large 

analysis uncertainties where more observations were required in order to reduce the 

model forecast error. However, the sensitivity study was performed in "a posteriori" 

diagnostic way in this study. For a practical problem, large forecast uncertainties 

can be identified using the ensemble forecast system (Kalnay and Toth, 1996). The 

forecast difference may be obtained by subtracting one member of the ensemble from 

another, then the localized forecast errors may be applied to the adjoint model in 

order to obtain the adjoint sensitivity. 
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APPENDIX A 

Sensitivity analysis 

The most general and fundamental concept for the definition of the sensitivity of 

a response to variations in the system parameters is the Gateau differential. The G-

differential VR( e0 ; h) of a specified response R( x) at e0 with increment h, is defined 

as 

lim[R(e0 +th) - R(e0)]/t = VR(e0
; h) 

t~O 
(.1) 

where all vectors h = (hx, hQ). The G-differential VR(e0 ; h) is related to the total 

variation of R at e0 through the relationship 

R(e0 + h) - R(e0
) = VR(e0

; h) + !J..(h)2 (.2) 

where 

lim[6.(th)/t] = 0 t-.o (.3) 

Following Zou et al. (1993c) and Navon (1997), given a specific response R(x, O!) 

R(x, 0!) = {ta r(t; x, O!)dt 
lto 

(.4) 

where O! is a model parameter vector, x denotes the model variables, the G differential 

V R(x0 , 0!0 , bz, ha:) of Rat the nominal values (x0, 0!0), for increments (hz, ha) around 

(x0 , 0!0), is given by 
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N is the dimension of the vector of model parameters and P is the dimension of 

the model variable. 

If a variation occurs solely in then-th parameter, the corresponding variation h~ 

of the parameter vector is 

and the corresponding sensitivity is V R!'. The relative sensitivity Sn is defined as 

the dimensionless quantity 

VRn (h~)-i s-- -n- R o an 
(.8) 

The larger the relative sensitivity, the more important the parameter. Hence, sen-

sitivity analysis can also be utilized as a tool in choosing the subset of the param-

eters for the parameter estimation by ranking their relative sensitivities to model 

responses. 
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APPENDIX B 

An example for deriving tangent linear and adjoint codes 

1. The original nonlinear codes 

SUBROUTINE SFLX(U1,U2,T1,T2,Q1,Q2,Z1,Z2,NTYPES,II,JJ,RIB, 

+ FSX,FLT,FM,RHO,GW) 

PARAMETER (ILEVV=12,ILEV1V=ILEVV+1) 

c 
C SUBROUTINE RETORNS SURFACE SENSIBLE (SEN) AND LA.TENT (CON) 

C HEAT FLUXES VIA STABILITY DEPENDENT BULK AERODYNAMIC 

C FORMULATION 
c 
C INPUT PARAMETERS: 

c 
C NTYPES - TYPE OF SURFACE 

c 
c 
c 
c 
c 
c 

-1 => LA1ID 

0 => OCEAN 

1 => LA1ID WITH SNOW 

2 => OCEAN WITH ICE 

C XRT1 - TERRAIN HEIGHT IN METERS 

C U1, U2 - WINDS IN M/S AT LEVEL 1 &: 2 

C T1, T2 - POTEHTI.AL TEMP. AT LEVEL 1 &: 2 

C Q1,Q2 - SPECIFIC HUMIDITY AT LEVEL 1 &: 2 

c 

c 

c 

COMMON /RHH9/ RH(ILEVV),DQQ(ILEVV) 

COMMON /EXTRA.9/ RB,USTR,OL,CD,CH,CQ,X7,X8,SIGZ2,ZV,ZT 

DATA G,VKC,ALPHA.,CP/9.81,.35,.04,1004.5/ 

INDX = 0 

CHP = 0. 

CQP = 0. 

133 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

c 
IF (NTYPES .HE. O) GOTO 15 

c 
Z2 = ZT 

c 
C COMPUTE CD OVER OCEAN AS A FUNCTION OF WilID SPEED 

c 
CD = 0.0011 

c 
C IF LAND POINT , COMPUTE ZO FROM TERRAIN HEIGHT FORMULATION 

C WITHIN SUBROUTINE TG 

C IF OCEAN POINT, COMPUTE ZO FROM ITERATIVE CHARNOCK METHOD 

c 

c 

c 

c 

c 

c 

c 

c 

c 

USTRSQ = CD• (U2••2) 

ZO = ALPHA•USTRSQ/G 

IF (ZO .LT. 1.0E-4) ZO = 1.0E-4 

Z1 = ZO 

IF (Z1 .GE. Z2) Z2 = Z2+Z1 

DO 35 I=1,3 

U2DUM = U2•ALOG(Z2/Z1)/ALOG(ZV/Zl) 

CALL SFXPAR(U1,U2DUM,T1,T2,Z1,Z2,USTR,TSTR,RIB,OL, 

+ CD,CH,CQ,II,JJ,KT,CHP,CQP,IHDX) 

ZO = ALPHA•(USTR••2)/G 

IF (ZO .LT. 1.0E-4) ZO = 1.0E-4 

Z1 = ZO 

IF (Z1 .GE. Z2) Z2 = Z2+Z1 

35 CONTINUE 

CHMAI = -2.0E-03 

CDMAX = 2.0E-03 

GOTO 25 
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15 U2DUM = U2•ALOG(Z2/Z1)/ALOG(ZV/Z1) 

c 
CHMAI = -5. OE-03 

CDMAI = 5.0E-03 

25 CALL SFIPAR(U1,U2DUM,T1,T2,Z1,Z2,USTR,TSTR,RIB,OL, 

+ CD,CH,CQ,II,JJ,KT,CHP,CQP,IHDX) 

c 

c 

c 

CD = AMilU (CD, CDMAX) 

CH = AMAX1(CH,CHMAX) 

CQ = CH 

U22 = U2DUM 
U22 = AMAX1(5.0,U22) 

FSX = RHO•CH•CP•U22•(T2-T1) 

FLT = RHO•CQ•U22•GW•(Q2-Q1) 
FM = RHO•CD•U22•U22 

RETURN 

EHD 

2. The tangent linear codes 

c 

SUBROUTINE TANSFLX(U1,U2,T1,T2,Q1,Q2,Z1,Z2,NTYPES,II,JJ,RIB, 

FSX,FLT,FM,RHO,GW,U19,U29,T19,T29,Q19,Q29, 
Z19,Z29,CD99,CH99,CQ99) 

C input: U19,U29,T19,T29,Q19,Q29,Z19,Z29,CD99,CH99,CQ99 
C U1,U2,T1,T2,Q1,Q2,Z1,Z2,ZV,ZT,RHO 

C output: FSI,FLT,FM,Z1,T1 

c 
P .ARAMETER (ILEVV=12, ILEV1 V=ILEVV+1) 

c 
C SUBROUTINE RETURNS SURFACE SENSIBLE (SEH) AHD LATENT (CON) 

C HEAT FLUXES VIA STABILITY DEPENDENT BULK AERODYNAMIC 
C FORMULATION 

c 
COMMON /PJm/ RH(ILEVV) ,DQQ(ILEVV) 
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c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

COMMON /'FI!RA/ RB,USTR,OL,CD,CH,CQ,X7,X8,SIGZ2,ZV,ZT 

COMMON /'FI!RA.9/ RB9,USTR9,0L9,CD9,CH9,CQ9,I.79,X89,SIGZ29,ZV9,ZT9 

COMMON /DENSITY9/ RH09 

DIMENSION ZS19(4),ZS29(4),ZOOSTR9(4),ZU2DUM8(4) 

DIMENSION ZZ18(4),ZZ28(4) 

DATA G,VKC,ALPHA,CP/9.81,.35,.04,1004.5/ 

INDX = 0 

CHP = 0. 

CQP = 0. 

IF (NTYPES .NE. O) THEN 

CBMAX = -5.0E-03 

CDMAX = 5.0E-03 

U2DUM9 = U29•ALOG(Z29/Z19)/ALOG(ZV9/Z19) 

ELSE 

CBMAX = -2.0E-03 

CDMAX = 2.0E-03 

ZZ29 = ZT9 

CCD90 = 0.0011 

USTRSQ9 = CCD90•(U29••2) 

ZZ09 = ALPHA•USTRSQ9/G 

IF (ZZ09 .LT. 1.0E-4) ZZ09 = 1.0E-4 

ZZ19 = ZZ09 

ZZ18(1) = ZZ09 

ZZ28(1) = ZZ29 

IF (ZZ19 .GE. ZZ29) ZZ29 = ZZ29+ZZ19 

ZUUSTR9(1) = USTRSQ9 

ZS19(1) = ZZ19 

ZS29(1) = ZZ29 
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c 

c 

c 

DO 35 I=l,3 

U2DUM8 = U29•ALOG(ZZ29/ZZ19)/ALOG(ZV9/ZZ19) 

CALL SFIPAR(U19,U2DUM8,T19,T29,ZZ19,ZZ29,UUSTR9,TSTR9,RRIB9, 

OOL9,CCD9,CCH9,CCQ9,II,JJ,KT,CHP,CQP,INDX) 

ZZ09 = ALPHA•(UUSTR9••2)/G 

IF (ZZ09 .LT. 1.0E-4) ZZ09 = 1.0E-4 

ZZ19 = ZZ09 

ZZ18(I+1) = ZZ09 

ZZ28(I+1) = ZZ29 

IF (ZZ19 .GE. ZZ29) ZZ29 = ZZ29+ZZ19 

ZU2DUM8(I) = U2DUM8 

ZUUSTR9(I+1) = UUSTR9 

ZS19(I+1) = ZZ19 

ZS29(I+1) = ZZ29 

35 CONTINUE 

c 

c 

c 

c 

c 

c 

c 

Z19 = ZZ19 

Z29 = ZZ29 

U2DUM9 = U2DUM8 

EHD IF 

U229 = U2DUM9 

U229 = AMAX1(5.0,U229) 

IF (NTYPES .NE. O) THEN 

U2DUM = U2•ALOG(Z29/Z19)/ALOG(ZV9/Z19) 

+U29•Z2/(Z29•ALOG(ZV9/Z19)) 

-U29•ALOG(Z29/Z19)•ZV/(ZV9•(ALOG(ZV9/Z19))••2) 

ELSE 

CCD = 0. 

USTRSQ = 2.•CCD90•U29•U2 
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c 

c 

c 

c 

c 

c 

ZZO = ALPHA•USTRSQ/G 

IF (ZZ18(1) .LE. 1.0E-4) ZZO = 0. 

ZZ1 = ZZO 

ZZ2 = ZT 

IF (ZZ18(1) .GE. ZZ28{1)) ZZ2 = ZZ2+ZZ1 

DO 36 I=1,3 

U2DUMM = U2•ALOG(ZS29{I)/ZS19{I))/ALOG(ZV9/ZS19(I)) 

+U29•(ZZ2/ZS29(I)-ZZ1/ZS19(I))/ALOG(ZV9/ZS19{I)) 

-U29•ALOG(ZS29(I)/ZS19(I))•(ZV/ZV9-ZZ1/ZS19(I)) 

/{ALOG(ZV9/ZS19(I))••2) 

CALL TANSFXPAR(U1,U2DUMM,T1,T2,ZZ1,ZZ2,UUSTR,TSTR,RRIB,OOL, 

CCD,CCH,CCQ,II,JJ,KT,CHP,CQP,INDX,U19,ZU2DUM8(I),T19, 
T29,ZS19(I),ZS29(I),UUSTR9,1,0) 

ZZO = 2.•ALPHA•ZUUSTR9(I+1)•UUSTR/G 

IF (ZZ18(I+1) .LE. 1.0E-4) ZZO = 0. 

ZZ1 = ZZO 

IF (ZZ18(I+1) .GE. ZZ28(I+1)) ZZ2 = ZZ2+ZZ1 

36 CONTINUE 

c 

c 

c 

Z1 = ZZ1 

Z2 = ZZ2 

U2DUM = U2DUMM 

EHD IF 

CALL TANSFXPAR(U1, U2DUM, T1, T2,Z1 ,Z2, USTR, TSTR,RIB, OL, 

CD,CH,CQ,II,JJ,KT,CHP,CQP,INDX,U19,U2DUM9,T19, 

T29,Z19,Z29,USTR9,0,1) 

IF(CD99. GE. CDMAX) CD = 0. 

IF(CH99 .LE. CHMAX) CH = 0. 

CQ = CH 
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c 

c 

c 

U22 = U2DUM 

IF(U2DUM9 .LT. 5.) U22 = 0. 

FSI = RHO•CH99•CP•U229•(T29-T19)+RH09•CH•CP•U229•(T29-T19) 

+RH09•CH99•CP•U22•(T29-T19)+RH09•CH99•CP•U229•(T2-T1) 

FLT = RHO•CQ99•U229•GW•(Q29-Q19)+RH09•CQ•U229•GW•(Q29-Q19) 

+RH09•CQ99•U22•GW•(Q29-Q19)+RH09•CQ99•U229•GW•(Q2-Q1) 

FM = RHO•CD99•U229••2+RH09•CD•U229••2+2.•RH09•CD99•U229•U22 

RETURN 

END 

3. The adjoint codes 

c 

SUBROUTINE ADJSFLX(U1,U2,T1,T2,Q1,Q2,Z1,Z2,NTYPES,II,JJ,RIB, 

FSX,FLT,FM,RHO,GW,U19,U29,T19,T29,Q19,Q29, 

Z19,Z29,CD99,CH99,CQ99) 

C input: U19,U29,T19,T29,Q19,Q29,Z19,Z29,CD99,CH99,CQ99 

C FSX,FLT,FM,Z1,T1 

C output: U1,U2, Tl, T2,Q1,Q2,Z1,Z2,ZV,ZT ,RHO 

c 
PARAMETER (ILEVV=12,ILEV1V=ILEVV+1) 

c 
C SUBROUTINE RETURNS SURFACE SENSIBLE (SEN) AND LATENT (CON) 

C BEAT FLUXES VIA STABILITY DEPENDENT BULK AERODYNAMIC 

C FORMULATION 

c 

c 

c 

COMMON /RHH/ RH(ILEVV),DQQ(ILEVV) 

COMMON /EXTRA/ RB,USTR,OL,CD,CH,CQ,I7,I8,SIGZ2,ZV,ZT 

COMMON /EXTRA.9/ RB9,USTR9,0L9,CD9,CH9,CQ9,X79,X89,SIGZ29,ZV9,ZT9 

COMMON /DENSITY9/ RH09 

DIMENSION ZS19(4),ZS29(4),ZUUSlR9(4),ZU2DUM8(4) 

DIMENSION ZZ18(4),ZZ28(4) 
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c 

c 

c 

c 

c 

c 

c 

c 

DATA G, VKC,ALPHA, CP/9. 81, .35, .04, 1004. 5/ 

INDX = 0 

CHP = 0. 
CQP = 0. 

IF (NTYPES • NE. 0) THEN 

CHMAX = -5.0E-03 

CDMAX = 5.0E-03 

U2DUM9 = U29•ALOG(Z29/Z19)/ALOG(ZV9/Z19) 

ELSE 

CHMAX = -2.0E-03 

CDMAX = 2.0E-03 

ZZ29 = ZT9 

CCD90 = 0.0011 

USTRSQ9 = CCD90•(U29••2) 

ZZ09 = ALPHA•USTRSQ9/G 

IF (ZZ09 .LT. 1.0E-4) ZZ09 = 1.0E-4 
ZZ19 = ZZ09 

ZZ18(1) = ZZ09 

ZZ28(1) = ZZ29 

IF (ZZ19 .GE. ZZ29) ZZ29 = ZZ29+ZZ19 

ZUUSTR9(1) = USTRSQ9 

ZS19(1) = ZZ19 

ZS29(1) = ZZ29 

DO 35 I=1,3 

U2DUM8 = U29•ALOG(ZZ29/ZZ19)/ALOG(ZV9/ZZ19) 

CALL SFIPAR(U19,U2DUM8,T19,T29,ZZ19,ZZ29,UUSTR9,TSTR9,RRIB9, 

OOL9,CCD9,f'~9,CCQ9,II,JJ,KT,CHP,CQP,INDX) 

ZZ09 = ALPHA•(UUSTR9••2)/G 

IF (ZZ09 .LT. 1.0E-4) ZZ09 = 1.0E-4 

ZZ19 = ZZ09 
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c 

c 

c 

ZZ18(I+1) = ZZ09 

ZZ28(I+1) = ZZ29 

IF (ZZ19 .GE. ZZ29) ZZ29 = ZZ29+ZZ19 

ZU2DUM8(I) = U2DUM8 

ZUUSTR9(I+1) = UUSTR9 

ZS19(I+1) = ZZ19 

ZS29(I+1) = ZZ29 

35 CONTINUE 

c 

c 

c 

c 

c 

c 

Z19 = ZZ19 

Z29 = ZZ29 

U2DUM9 = U2DUM8 

EHD IF 

0229 = U2DUM9 

0229 = AMAX1(5.0,U229) 

RHO = RHO+FM•CD99•U229••2 

CD = RH09•FM•U229••2 

022 = 2.•RH09•CD99•U229•FM 

RHO = RHO+FLT•CQ99•U229•GW•(Q29-Q19) 

CQ = RH09•FLT•U229•GW•(Q29-Q19) 

022 = U22+RH09•CQ99•FLT•GW•(Q29-Q19) 

Q2 = RH09•CQ99•0229•GW•FLT 

Q1 = -RH09•CQ99•U229•GW•FLT 

RHO = RHO+FSX•CH99•CP•U229•(T29-T19) 

CH = RH09•FSX•CP•U229•(T29-T19) 

U22 = U22+RH09•CH99•CP•FSX•(T29-T19) 

T2 = RH09•CH99•CP•U229•FSX 

T1 = T1-RH09•CH99•CP•U229•FSX 

IF(U2DUM9 .LT. 5.) U22 = 0. 

U2DUM = 022 
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c 

CH = CH+CQ 

IF(CD99. GE. CDMAX) CD = 0. 

IF(CH99 .LE. CHMAX) CH = 0. 

C Z2 = 0. 

U1 = 0. 

c 
USTR = 0. 

C OL = 0. 

c 

CALL ADJSFIPAR(U1,U2DUM,T1,T2,Z1,Z2,USTR,TSTR,RIB,OL, 

CD,CH,CQ,II,JJ,KT,CHP,CQP,DlDX,U19,U2DUM9,T19, 

T29,Z19,Z29,USTR9,0,1) 

U2 = 0. 

c zv = 0. 

c 

c 

c 

c 

c 

c 

IF (NTYPF.S • HE. 0) THEN' 

U2 = U2+U2DUM•ALOG(Z29/Z19)/ALOG(ZV9/Z19) 

Z2 = Z2+U29•U2DUM/(Z29•ALOG(ZV9/Z19)) 

ZV = ZV-U29•ALOG(Z29/Z19)•U2DUM/(ZV9•(ALOG(ZV9/Z19))••2) 

ELSE 

U2DUMM = U2DUM 

ZZ2 = Z2 

ZZ1 = Z1 

ZT = 0. 

DO 36 !=3,1,-1 

IF (ZZ18(!+1) .GE. ZZ28(I+1)) ZZ1=ZZ1+ZZ2 

ZZO = ZZ1 

IF (ZZ18(I+1) .LE. 1.0E-4) ZZO = 0. 

UUSTR = 2.•ALPllA•ZUUSTR9(!+1)•ZZO/G 

ZZ1 = 0. 

IF(I.HE.3) U2DUMM = 0. 
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c 

CCD = 0. 

CCH = 0. 

OOL = 0. 

CALL ADJSFXPAR(U1,U2DUMM,T1,T2,ZZ1,ZZ2,UUSTR,TSTR,RRIB,OOL, 

CCD,CCH,CCQ,II,JJ,KT,CHP,CQP,INDX,U19,ZU2DUMS(I),T19, 

T29,ZS19(I),ZS29(I),UUSTR9,1,0) 

U2 = U2+U2DUMM•ALOG(ZS29(I)/ZS19(I))/ALOG(ZV9/ZS19(I)) 

ZZ2 = ZZ2+U29•U2DUMM/ZS29(I)/ALOG(ZV9/ZS19(I)) 

ZZ1 = ZZ1-U29•U2DUMM/ZS19(I)/ALOG(ZV9/ZS19(I)) 

ZV = ZV-U29•U2DUMM•ALOG(ZS29(I)/ZS19(I)) 

/(ZV9•ALOG(ZV9/ZS19(I))••2) 

ZZ1 = ZZ1+U29•U2DUMM•ALOG(ZS29(I)/ZS19(I))/(ZS19(I)• 

ALOG(ZV9/ZS19(I))••2) 

36 CONTINUE 
c 

c 

c 

c 

IF (ZZ18(1) .GE. ZZ28(1)) ZZ1=ZZ1+ZZ2 

ZT = ZT+ZZ2 

ZZO = ZZ1 

IF (ZZ18(1) .LE. 1.0E-4) ZZO = 0. 

USTRSQ = ALPHA•ZZO/G 

U2 = U2+2.•CCD90•U29•USTRSQ 

CCD = 0. 

END IF 

RETURN 
END 
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